07 Absolute Value of Dirichlet Beta Function
7.1 Dirichlet Beta Function

7.1.1 Definition
Dirichlet Beta Function (Z) is defined in the half plane Re{3(z)} >0 as follows.
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This series is analytically continued to the whole complex plane by applying some kind of acceleration method.
The easiest of these is the Euler transformation as follows.
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(1.0) and (1.1) are the same in Re{3(z)} >0 . Although (1.0) can not express the left side of line the of
convergence, (1.1) can express also the left side of this. Therefore, we can define Dirichlet Beta Function ,B(Z)
by (1.1).

7.1.2 Overview
The 3D figures of the real part and the imaginary part of Dirichlet Beta Function ﬁ(X +i y) are as follows.
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Further, the 3D figure of the absolute value is as follows. In the left figure, trivial zeros of ,B(Z) are observed
along the X axis. The right figure is a view of the left figure from the bottom. We can see that zeros of ,B(Z)

are located along X =1/2 . Unlike Dirichlet eta function, there is no zero point on X=1 .




As seen in these figures, Dirichlet Beta Function ﬁ(Z) has two kinds of zeros as follows.
(1) Trivial zeros -1,-3,-5,-7, -
(2) Non-trivial zeros 1/2+16.020 , 1/2+110.2437- , 1/2+112.9880- , -

Non-trivial zeros (1) exist in 0<x <1 called critical Strip . Moreover, it is proved that they have to exist

symmetrically with respect to X =1/2 . (" |O4 Completed Dirichlet Beta|“ , Theorem 4.2.1 ) . And, fortunately,
this critical strip is included within the convergence range of the series (1.0) .

7.1.3 Non-trivial zeros
The figures of the real part and the imaginary part of Dirichlet Beta Function ﬂ(z) at X=1/2 are as follows.
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The red points are non-trivial zeros. We can see the followings from the figure.

(1) The real part resembles a negative cosine curve and the imaginary part resembles a sine cune.
(2) The extrema points of the real part are close to the zeros of the imaginary part but not zeros.
(3) Non-trivial zeros are close to the local minimum points of the real part, but are not so.

(4) Non-trivial zeros are the uphill zeros (end of cycles) of the imaginary part.

Downhill Zeros
Exceptions exist in (3) and (4). For example, The left figure is near y =139 . The right figure is an enlarged

view around the zero point (red point) on the right side of the left figure. Non-trivial zero point 138.7501 -
is near the local maximum point of the real part and is the downhill zero point of the imaginary part.
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7.1.4 Feature of Dirichlet Beta Series
Obsening|7.1.3] we can see that this Dirichlet beta series consists of one periodic function which gives
nontrivial zeros. However, its amplitude and period are not constant.



7.2 Squared Absolute Value of Dirichlet Beta
Squared absolute value of Dirichlet Beta function is

o,y = 18K, ° (2.0)

This is a real-valued function with two variables. And it is shown in the figure as follows.

On the left figure, dents are observed along X =1/2 . The right figure is a view from the bottom of a part
(0<x<1,y2>0) ofthe left figure. In the right figure, zeros are observed along X=1/2 . No zero

point is observed on lines other than X=1/2..

Features in O <x < 1/2
Let us focus on space O <X < 1/2 . The figures of section in X=0, 1/4 , 1/2 are drawn as follows.
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Looking at this, it looks like |3(0,y) |2 > |A(/4,y)|% > | B(/2,y)| % in 1.5639 <y < 20.

It is the same also in 600 <y < 620 . Below, we obsene this in more detail.

(1) 0<y<1.4662
The front view of 3D in this interval is the left figure. The cutaway view at Y =0, 0.73, 1.4662 of this

is the right figure. In this interval, Iﬂ(x,y)l 2 seems to be monotonically increasing with respect to X .
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(2) 1.4662 < y < 1.5639

The front view of 3D in this interval is the left figure. The cutaway view at Y =1.4663, 1.52, 1.5638
of this is the right figure. In this interval, |/)’(x,y) | 2 is not monotonic with respect to X . In the right figure,
although the curve of Y= 1.4663 looks like monotonically increasing, it is decreasing at the left end when
it is seen enlarged. Although the cune of Y =1.5638 looks like monotonically decreasing, it is increasing
at the right end when it is seen enlarged.
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(3) y >1.5639
The front view of 3D in this interval is the left figure. The cutaway view at Yy =0, 1.5639, 6, 10 of this

is the right figure. In this interval, |,B(x,y)| 2 seems to be monotonically decreasing with respect to X .
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Based on the observations above, | present the next hypothesis equivalent to the Riemannian hypothesis.

Hypothesis 7.2.1

When B(X,Y) is the Dirichlet Beta function on the complex plane, the squared absolute value | S(X,Y)| 2
is a monotonically decreasing function in the region 0 < x < 1/2, y 2 2.

Remark

The zeros common to the Riemann Zeta function exist in Q<X <1 called critical strip . Moreover, it is
proved that they have to exist symmetrically with respect to X =1/2 . So, if I,B(x,y)l 2 is monotonically
decreasing with respect to X inthe region O < X < 1/2, y 2 2, zeros do not exist in the region and

the opposite region 1/2 <X < 1,y > 2. This is equivalent to the Riemann hypothesis.

Incidentally, in the opposite region 1/2 <x < 1,y > 2, |S(X,y)| 2 is not necessarily a monotone

function with respect to X .



7.3 Expression of Squared Absolute Value by Series

7.3.1 Expression of Dirichlet Beta Function by Series
As seenin 7.1.1, Dirichlet Beta Function ﬂ(z) was defined as follows.
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When Re(@) >0, let z=x+iy . Then,
A= X EDTHE@e-DTY x>0
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If this is represented by an exponential function,
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If this is represented by a trigonometric function,
S _, cos{ylog2r-1} . & _q sin{ylog2r-1)}
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7.3.2 Expression of |/ | 2 by Double Series
Squared absolute value of Dirichlet Beta function | 77(x,y)| 2 is expressed using (3.1) as follows.
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Although it looks like a very complicated, it becomes an unexpectedly simple expression when it is expanded
and organized.

Formula 7.3.2
When S(X,Y) is the Dirichlet Beta Function,
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Let (-1)"*cos{ylog(2r-1)} =Cp_1. Then,
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This square is
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Returning to the original symbol ,
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Here,

cos{ylog(2r-1) }cos{ylog(2s-1) } +sin{ylog(2r-1) }sin{ylog (2s- 1)}—cos(y|og o 1 )

Using this,
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The first few lines are as follows.
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When both sides of [(3.2)] are illustrated together, it is as follows. Here, the upper limit of 22" is 150 x 150.

Both sides almost coincide near X =1, but do not coincide near X=0.
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Then, we attach the parallel accelerator ( See "[13 Convergence Acceleration of Multiple Series|" (A la carte) )
to the right side of (3.2) .
ok Kk k—r—s k (_1)r+5
f(x,y,q) = ( ) s(y log ) (3.2)
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When this is illustrated at (=1/3 and m=30, it is as follows. (m is the upper limit of 2. Same as below.)
Both sides owerlap exactly and look like spots.
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Incidently, when (3.2) is calculated at X=-3,y=0,g=1, m=50, itis as follows.
N[£f[-3, 0, 1, 50]]
-4.44089x1071¢
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Since Xx=-3,y=0 is a trivial zero point of B(X,y) , this means that the right side of (3.2) is analytically

continued in the negative direction beyond the line of convergence X =0 .

Using|Formula 7.3.2|, a hypothesis equivalent to the Riemann hypothesis can also be described as follows.

Hypothesis 7.3.3
When S(X,Y) is the Dirichlet Beta function on the complex plane, the following inequality holds.
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If this is illustrated, it is as follows. Green, orange, and blue are each a cutaway view of | Z(X,Y) | 2 at

X=0, 1/4 and 1/2, and the red points are zeros on the critical line (X =1/2) .

10

o

0 5 10 15 20

Other than the blue line is not in contact with the y-axis. This means that | S (X,Y) | 2 has no zero point at

X <1/2 . And, it is equivalent to that the Dirichlet Beta Function has no zero point except at the critical line.



7.4 Theorems at Zeros

As seen in the previous section , squared absolute value of Dirichlet Beta function was expressed as follows.
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The following theorems hold for the zeros of this double series.

Theorem 7.4.0
When S(X,Y) is Dirichlet Beta Function, if f#(a,b) =0,
0 -1 2s5-1
D -, acos(blog > ) =0 (4.0c)
1571 { (2r-1)(2s-1)} 2r-1
% & D s-1)\ _
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Proof
Since the left side of (4.0c) is the absolute value of ﬁ(a b ) (4.0c) is natural. (4.0s) is proved at the end
of this section.

Interestingly, at a zero point (a , b) of ﬂ , each of these rows have to be all O . Below, we state this as a

theorem.

Theorem 7.4.1
When S(X,Y) is Dirichlet Beta Function, if f#(a,b) =0,

c S ik 2s-1
> ) cos(blog S_ ) =0 for r=1,2,3, - (4.1c)
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Proof
Let C, be the I' th row of the double series (4.1c) . Then,
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_ (‘1) S (‘) 2s-1
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Here,

cos(blog ;ij ) = cos{blog(2r-1) }cos{blog(2s-1) } + sin{blog(2r-1) }sin{blog(2s-1) }

Using this,
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r =

- [Lcos{blog(2r-1) }cos{blog(2s-1) }
+sin{blog(2r-2) }sin{blog(2s-1) } ]

-10 -



_ D" DS )
(2 Y cos{blog(2r 1)}2 S_l)acos{blog(ZS D}

+sin{blog(2r- 1)}§ ¢ )1) sin{blog(2s-1) }
S

At a zero point (&,b) of 3,
S GO) _ N GO) _
Z ~cos{blog(2s-1)} =0 , Y} ———sin{blog(2s-1)} =
=1 (2s-1)° =1 (2s-1)°

Therefore, cr(a,b) =0 forr=1,2,3,

In a similar way, let S, be the I th row of the double series[(4.1s)] Then,
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o (2r-1)a§1 @s-1)* Sm(blog 2r 1)

Here,

sin(blog gij ) = cos{blog@2r-1) }sin{blog(2s-1) } - sin{blog(2r-1) }cos{blog(2s-1) }

Using this,
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For the same reason as the above, S (a,b) = 0 forr=1,2,3, at azero point (@,b) of 5.

From this, the following corollary follows.

Corollary 7.4.1'

When S(X,Y) is Dirichlet Beta Function, if f(a,b) =0,
GO s=1) _
y —— cos(blog o ) =0 for r=1,2,3, -~ 4.1¢)
=1 (2s-1)° -1
o (-1D)S
ngm(blog >~ 1) =0 for r=1,2,3, -~ (4.1s")
for| (23_1) 2r-1

Putting & = b log r in this corollary, we obtain the following.

Corollary 7.4.1"
When S(X,Y) is Dirichlet Beta Function, if f(&,b) =0, the following expressions hold for arbitrary

real number

1%
il%cos{b log(2s-D+6} =0 (4.1c")

S
2
o _ S
Zl D) —sin{blog(2s-1)+ 6} = 0 (4.1s")

(2s-1)
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Example
We iIIustrate Since the convergence of this left side is slow and it is difficult to draw an accurate figure,
we apply Knopp transformation ( See " [10 Convergence Acceleration & Summation Method|" (A la carte) ) to

this as follows.
k-s

_n & g (
h.(,y, 6,q,m) =
.y, 6.9.m) kgl sgl (q+1)k+1 S

s-1
((2_3121)" cos{ylog(2s-1)+6}

Here, this is illustrated at (| =1/3 and m=25.

The left figure is a cutaway view at X =1/2 when y=6.0209 . We can see that h. =0 for any @ in

this cutting surface.
The right figure is a cutaway view at Y =6.0209 and y=10.2437 - when X=1/2. We can see

that hC =0 for any @ in these cutting surfaces. It is surprising that the contour lines appear innumerably in

such a twisted figure.

Using Corollary 7.4.1", we obtain the following theorem.

Theorem 7.4.2
When B(X,Y) is Dirichlet Beta Function and C(I") is arbitrary real valued function,

if f(a,b) =0, the following expressions hold.

c()

® o 2s5-1
-1 cos(blo ) =0 (4.2¢c)
rglsgl( ) {@r-Ds-)}? Sor1
S & + c() : 2s-1
-1 sm(blo ) =0 (4.2s)
rglsgl( ) {Q@r-1x2s-1)}? 92r-1
Proof
From |Corol|ary 7.4.1 (4.1c')|,
0 — s —
Z&COS(blog 2s-1 ) =0 for r=1,2,3,
o | (23_1)3 2r-1

Multiplying both sides by (=1)"c()/(2r-1)2,

5 Az c(
sgl( = {@r-1)(2s-1)}°

2s-1
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cos(blog ) =0 for r=1,2,3,
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Adding up about I' , we obtain|(4.2c)|. In a similar way, (4.2s) is obtained.

Proof of Theorem 7.4.0 (4.0s)
Particularly placed C{r)= 1 in [Theorem 7.4.2 (4.2s)], [(4.0s)] is obtained.

-13-



7.5 Patrtial Derivative of Squared Absolute Value
7.5.1 First order Partial Derivative

Formula 7.5.1
When squared absolute value of Dirichlet beta function is

D™ 2s-1 _ 2
f(x.y)= ;1521{@ X5 D) S(yl092r_1) (=181 (32)

The 1st order partial derivatives are givern as follows.

® & r+s log(2r-1)
f,= -2 -1
X r;ls;l( ) {(2r—1)(25—1)}

% 9 s log(2r-1) 2s-1
23 S (-1 ! |
22O G s =y oW

s-1
(ylog 51 ) (5.1x)

Proof
Differentiating (3.2) with respect to X

B O s 05
T glgl(_l)m {(zlf ?f)z(;;i)l)}xcos(ylog er )
P e e (e =y
Swapping I' and S in the 2nd term on the right side,
) 2121(_1)r+s {(zlf?l()z(zgi)1)}xc S(ylog o= )
- glgl(_l)SH {(210?1()2(;1-)1)} <y 100 25~ 1 )

Substituting this for the 2nd term on the nght side, we obtain (5.1x) .
Next, differentiating (3.2) with respect to Y

--5 S e log{ (2s-1)/(2r-D} _ (ylog —1)

{@r-DEs-H}* 2r-1
SRy r+s Iog(23—1) 2s-1
= - - |
226D (@r-1x25-D 1" (y %931 )
9 & rts log(2r-21) s-1
;;1 D {(2r—1)(2s—1)} (ylog 2r-1 )

Swapping I and S in the 1st term on the right side,

& & s log(2s-1) s-1
220D (@r-@-D) (y > 2r 1 )
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DA (@s-D@r-D1*

5 &, anstr 1092r-1)
s;l;l( D {@r-D@s-D}*

Substituting this for the 1st term on the right side, we obtain |(5.1y)|.

log(2r-21) ( 2r-1
niylog= )
s-1

sin(ylog ;ij ) {- sin(-2) = -sinz}

If| Formula 7.5.1| is drawn as it is, the vicinity of the origin can not be drawn beautifully. So, we attach the
parallel accelerator ( See "|13 Conwergence Acceleration of Multiple Series |" (A la carte) ) to the right sides.

sk o koogfTs ok . log(ar-1 -1
fGy.a) = -23 3 3 k+1(HS)(—l)r 0er-1) (ylogzrl)

k=1r=1s=1 (q+1) {(2r—l)(25—1)}
(5.1x))
_oak kg ( k ) s logQ2r-1 s-1
fyCoy.0) = 2k21r 151 @@+ r+s D {(2r-1)(2$—1)} (ylog 2r- 1)
(5.1y)

When these are illustrated at (=1/3 and m=25, it is as follows. Blue is f, and orange is f, .
It looks like f, < 0.

In addition, it is better to draw using|(5.1x) or (5.1y) in the area where Y is large (approximately 30 or more).

7.5.2 Necessary Condition for Local Minimum

Theorem 7.5.2 ( Stationary Condition )
When S(X,Y) is Dirichlet Beta Function, if S(@,b) =0, the following expressions hold .

AR, s 109@r-1) s-1 y
f(ab) =23 5D o (blog = 1) 0 (5.2%)
_ S &, AT log(2r-1) s-1
f(a,b) = 2;18;1( D {(2r—1)(25—1)} (blog 51 ) 0 (5.2y)

Proof
The problem of searching for the zeros of (X,y ) reduce to the problem of finding the local minimums of

f(x,y) { | B0, Y) | } . (5.2x) and (5.2y) are well known as stationary conditions of two-variable real

valued function.

-15-
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The point (a,b ) satisfying the stationary condition (5.2x) and (5.2y) is called a stationary point. When the
contour plot is drawnin O <X < 1, 0 <y < 20 using the function ContourPlot of Mathematica,

it is as follows.

20F° . . : . 4
-—
-
15 1 B
e
10 - i — fx=0
— fy=0
5l i
oL ) ) . ) E
0.0 02 0.4 0.6 08 1.0

The red points on X =1/2 are non-trivial zeros. Since f(a,b) =|4(a,b)|*= 0, these are all loac!

minimums of f(X ,y) . As far as obsening this figure, it seems that there is no stationary point other than
the local minimum point.

7.5.3 Non-trivial zeros
The figures of f, and f, at X=1/2 are as follows.

x=1/2
51
i S — fx(—,y, —,25)
o — .y 7. 25)
_10l

Blue is fx, orange is fy and red points are non-trivial zeros. We can see the followings from the figure.
(1) f, resembles a cosine curve and fy resembles a sine curve.

(2) The extrema points of fX are not generally zeros of fy. However, exceptions exist.

(3) Non-trivial zeros are the local maximum points of f; and are zeros of f, ..

(4) Non-trivial zeros are the uphill zeros (end of cycles) of fy.

(5) In fx , fy, the end of each cycle is a non-trivial zero point. That is, there is no useless cycle.
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When these results are compared with , the parts of the blue are very different. Fo the sign of the
cosine curve is different. As an example of (3) , when the local maximum point of fX and the zero point of

fy around Y =6 are calculated, they are as follows. Both coincide with the first non-trivial zero 6 . 02094 -

1 1 1 1
FindH.aximmn[fx[— r ¥y — 35] LV, 6}1 FindRoot[fy[— r Yr — s 30] L L, 6}]
2 3 2 3
{-1.08773x 107", {y > 6.02095} } { v- 6.02095}

Absence of downhill zeros
In , there was a downhill zero point of imaginary part around Y =139 . What about f, , fy ?

To see this, we rearrange |(5,1x) and (5.1y)| along the diagonal as follows.

+ log(2r+1-25) 2s-1
f= -2 ™ (m—) 5,1
" ersZ( ) {@r+1-2s)2s-1D}" Yo% are1-2s &0
. log(2r+1-25) . 2s-1
f= 2 )™ (m—) 5.1y
y ersZ( ) {(2r+1—23)(25_;|_)}X ylog 2r+1-2s (6.1y)

When the figure around Y =139 is drawn using these , it is as follows.

(", y, 748)

IV 135.6 e 0’ 2
ry(i y ?50)
i 2:' 2

— & F

=

Non-trivial zero point 138.7501 - ( right red point ) is the local maxium point of f, and is uphill zero point
of fy. The left zero point 138.4572+ is not drawn correctly. but if correctly drawn, it should also be the

uphill zero point of f,. Thatis, Inthe case of fy, f,, there are no exceptions of [(3) and [@)].

7.5.4 Second order Partial Derivative
The 2nd order partial derivatives of squared absolute value of Dirichlet Beta function f(x,y) is expressed
as follows respectively,.

_ 9yt Iog(2r—1)|og(23—1)+Iogz(2r—1) 2s-1
b= 22,2CD {@r-1x2s-n}* Cos(ylog 2r-l )
_ o o rs Iog2(2r—1) 2s-1
foy = —2 I =f
i 220D {(2r—1)(23—1)} (y 92r- 1) (=)
_ © @ yres Iog(2r—1)|og(23—1)—Iogz(Zr—l) 2s-1
fy = log———=
w= 222C1 {@r-1@s-n )" Cos(y Mo )

As well known, the discriminant for determining the stationary point (a,b) of f(x,y) to be the minimum

point is as follows.
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f(@b) >0
f(@.b) fy@,b) - {f,(@,b)}* >0

As a result of some numerical calculations, all the stationary points satisfied two inequality without exception.
As far as this function T(X,y) {= | B, Y) | 2 } is concered, it seems that there is no stationary point

that does not satisfy these inequalities.

7.5.5 hypothesis equivalent to the Riemann hypothesis
Last, using Formula 7.5.1|, we present a hypothesis equivalent to the Riemann hypothesis.

Hypothesis 7.5.5
When ﬂ(X ,y) is the Dirichlet Beta function on the complex plane, the following inequality holds.
0 @ log(2r-2) 2s-1 O<x< 12
f,=-2 D cos(ylog—) <0 for (5.5)
" glsgl {@r-1x2s-1)}* 2r-1 y>2

If this is illustrated, it is as follows. Blue is f, (1/2,y ), orangeis f, (1/4,y ), greenis f,(0,y) and

the red points are zeros on the critical line (X =1/2) . Other than the blue line is not in contact with the

10+

ool — fx(g v, % 4D]
_l fx(i y, % 4D]
-10} 50, . 7, 40}
_sol

—-ROL

Other than the blue line is not in contact with the y-axis. This means that fX(X ,Y) has no zero point at
x<1/2, y 2 2. And, it is equivalent to that the Dirichlet Beta Function has no zero point except at the

critical line.

2019.07.18
Kano Kono

| Alien's Mathematics |
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