
07 Absolute Value of Dirichlet Beta Function

7.1 Dirichlet Beta Function

7.1.1 Definition

Dirichlet Beta Function( )z is defined in the half plane Re ( )z >0  as follows.

( )z  = Σ
r=1



( )2r-1 z

( )-1 r-1

(1.0)

This series is analytically continued to the whole complex plane by applying some kind of acceleration method.

The easiest of these is the Euler transformation as follows.

( )z  = Σ
k=1



2k+1

1
Σ
r=1

k

 
k

r ( )2r-1 z

( )-1 r-1

(1.1)

(1.0) and (1.1) are the same in Re ( )z >0 . Although (1.0)  can not express the left side of line the of

convergence, (1.1) can express also the left side of this. Therefore, we can define Dirichlet Beta Function( )z
by (1.1) .

7.1.2 Overview

The 3D figures of the real part and the imaginary part of Dirichlet Beta Function( )x +i y  are as follows.

Further, the 3D figure of the absolute value is as follows. In the left figure, trivial zeros of ( )z  are observed

along the x axis. The right figure is a view of the left figure from the bottom. We can see that zeros of ( )z

are located along x =1/2 . Unlike Dirichlet eta function, there is no zero point on x =1 .
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As seen in these figures,  Dirichlet Beta Function( )z has two kinds of zeros as follows.

(1) Trivial zeros -1,-3,-5,-7,

(2) Non-trivial zeros 1/2 i 6.020 , 1/2 i 10.2437 , 1/2 i 12.9880 , 

Non-trivial zeros (1) exist in 0< x <1  called Critical Strip . Moreover, it is proved that they have to exist

symmetrically with respect to x =1/2 . (" 04 Completed Dirichlet Beta " , Theorem 4.2.1 ) . And, fortunately,

this critical strip is included within the convergence range of  the series (1.0) .

7.1.3 Non-trivial zeros

The figures of the real part and the imaginary part of Dirichlet Beta Function ( )z at x =1/2  are as follows.

  The red points are non-trivial zeros.  We can see the followings from the figure.

(1) The real part resembles a negative cosine curve and the imaginary part resembles a sine curve.

(2) The extrema points of the real part are close to the zeros of the imaginary part but not zeros.

(3) Non-trivial zeros are close to the local minimum points of the real part, but are not so.

(4) Non-trivial zeros are the uphill zeros  (end of cycles) of the imaginary part.

Downhill Zeros

  Exceptions exist in (3) and (4). For example, The left figure is near y =139 . The right figure is an enlarged

view around the zero point (red point) on the right side of the left figure.  Non-trivial zero point 138.7501
is near the local maximum point of the real part and is the downhill zero point of the  imaginary part.
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7.1.4 Feature of Dirichlet Beta Series
  Observing 7.1.3 ,  we can see that this Dirichlet beta series consists of one periodic function which gives

nontrivial zeros. However, its amplitude and period are not constant.
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7.2 Squared Absolute Value of Dirichlet Beta
  Squared absolute value of Dirichlet Beta function is

f( )x,y  =  ( )x, y 2
(2.0)

This is a real-valued function with two variables. And it is shown in the figure as follows.

 

  On the left figure, dents are observed along x =1/2 . The right figure is a view from the bottom of a part

 0  x  1 , y  0  of the left figure.  In the right figure, zeros are observed along x =1/2 .  No zero

point is observed on lines other than x =1/2 .

Features in 0  x  1/2

  Let us focus on space 0  x  1/2 . The figures of section in x =0 , 1/4 , 1/2  are drawn as follows. 

 

Looking at this, it looks like  ( )0, y 2 >  ( )1/4 , y 2 >  ( )1/2 ,y
2

in 1.5639  y  20 .

It is the same also in 600  y  620 . Below, we observe this in more detail. 

(1) 0  y  1.4662

  The front view of 3D in this interval is the left figure. The cutaway view at y =0, 0.73, 1.4662 of this

is the right figure.  In this interval,  ( )x,y 2
 seems to be monotonically increasing with respect to x .
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(2) 1.4662 <  y < 1.5639

  The front view of 3D in this interval is the left figure. The cutaway view at y =1.4663, 1.52, 1.5638
of this is the right figure. In this interval,  ( )x ,y

2
 is not monotonic with respect to x . In the right figure,

although the curve of y =1.4663  looks like monotonically increasing, it is decreasing at the left end when

it is seen enlarged. Although the curve of y =1.5638  looks like monotonically decreasing, it is increasing

at the right end when it is seen enlarged.

 

(3) y  1.5639

  The front view of 3D in this interval is the left figure. The cutaway view at y =0, 1.5639 , 6 , 10  of this

is the right figure. In this interval,  ( )x,y 2
 seems to be monotonically decreasing with respect to x .

 

  Based on the observations above, I present the next hypothesis equivalent to the Riemannian hypothesis.

Hypothesis 7.2.1

 When ( )x ,y is the Dirichlet Beta function on the complex plane,  the squared absolute value ( )x,y 2

is a monotonically decreasing function in the region 0 <  x < 1/2 ,  y  2 .

Remark

  The zeros common to the Riemann Zeta function exist in 0< x <1  called critical strip .  Moreover, it is 

proved that they have to exist symmetrically with respect to x =1/2 . So, if  ( )x,y 2
 is monotonically

decreasing with respect to x  in the region 0 <  x < 1/2 , y  2 ,  zeros do not exist in the region and

the opposite region 1/2 < x < 1 , y  2 .  This is equivalent to the Riemann hypothesis.

  Incidentally, in the opposite region 1/2 < x < 1 , y  2 ,  ( )x,y 2
 is not necessarily a monotone 

function with respect to x .
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7.3 Expression of Squared Absolute Value by Series

7.3.1 Expression of Dirichlet Beta Function by Series

  As seen in 7.1.1 , Dirichlet Beta Function ( )z was defined as follows.

( )z  = Σ
r=1



( )2r-1 z

( )-1 r-1

Re( )z > 0

When Re( )z > 0 , let z =x + i y . Then,

( )x, y  = Σ
r=1


( )-1 r-1 ( )2r-1 -x- i y x >0

If this is represented by an exponential function,

( )x, y  = Σ
r=1


( )-1 r-1 e-( )x+ i y log( )2r-1  = Σ

r=1


( )-1 r-1 e-xlog( )2r-1 -i ylog( )2r-1

If this is represented by a trigonometric function,

( )x ,y  = Σ
r=1


( )-1 r-1

( )2r -1 x

cos y log( )2r -1
- iΣ

r=1


( )-1 r-1

( )2r -1 x

sin y log( )2r -1
(3.1)

7.3.2 Expression of   2
 by Double Series

  Squared absolute value of Dirichlet Beta function  ( )x,y 2
 is expressed using (3.1) as follows. 

       ( )x ,y 2 =  Σ
r=1


( )-1 r-1

( )2r -1 x

cos y log( )2r -1 2

+  Σ
r=1


( )-1 r-1

( )2r -1 x

sin y log( )2r -1 2

Although it looks like a very complicated, it becomes an unexpectedly simple expression when it is expanded

and organized.

Formula 7.3.2

  When ( )x ,y is the Dirichlet Beta Function,

 ( )x ,y 2 = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

(3.2)

Proof

  Let ( )-1 r-1cos y log( )2r -1  = C2r-1 .  Then,

Σ
r=1



( )2r -1 x

( )-1 r-1cos y log( )2r -1
 = 

1x

C1
 + 

3x

C3
 + 

5x

C5
 + 

7x

C7
 +

This square is

1x

C1
 + 

3x

C3
 + 

5x

C5
 + 

7x

C7
 + 

9x

C9
 + 

11x

C11
 +

     
1x

C1
 + 

3x

C3
 + 

5x

C5
 + 

7x

C7
 + 

9x

C9
 + 

11x

C11
 +

  =   
1x

C1

1x

C1
 + 

1x

C1

3x

C3
 + 

1x

C1

5x

C5
 + 

1x

C1

7x

C7
 +

     + 
3x

C3

1x

C1
 + 

3x

C3

3x

C3
 + 

3x

C3

5x

C5
 + 

3x

C3

7x

C7
 +
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     + 
5x

C5

1x

C1
 + 

5x

C5

3x

C3
 + 

5x

C5

5x

C5
 + 

5x

C5

7x

C7
 +

     + 
7x

C7

1x

C1
 + 

7x

C7

3x

C3
 + 

7x

C7

5x

C5
 + 

7x

C7

7x

C7
 +

      

    = Σ
r=1



Σ
s=1



( )2r -1 x ( )2s -1 x

C2r-1 C2s-1

i.e.

 Σ
r=1



( )2r -1 x

( )-1 r-1cos y log( )2r -1
2

 =  Σ
r=1



( )2r -1 x

C2r+1
2

 = Σ
r=1



Σ
s=1



( )2r -1 x( )2s -1 x

C2r+1 C2s+1

Let ( )-1 r-1sin y log( )2r -1  = S2r-1 .  Then, in a similar way, we obtain

 Σ
r=1



( )2r -1 x

( )-1 r-1sin y log( )2r -1
2

 =  Σ
r=1



( )2r -1 x

S2r-1
2

 = Σ
r=1



Σ
s=1



( )2r -1 x( )2s -1 x

S2r-1 S2s-1

Then,

 ( )x ,y 2 =  Σ
r=1


( )-1 r-1

( )2r -1 x

cos y log( )2r -1 2

+  Σ
r=1


( )-1 r-1

( )2r -1 x

sin y log( )2r -1 2

     = Σ
r=1



Σ
s=1



 ( )2r-1 ( )2s-1 x

C2r-1 C2s-1 + S2r-1 S2s-1

Returning to the original symbol ,

| | 2 =Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

1
( )-1 r-1cos y log( )2r -1 ( )-1 s-1cos y log( )2s -1

       ( )-1 r-1sin y log( )2r -1 ( )-1 s-1sin y log( )2s -1
i.e.

    | | 2 =Σ
r =1



Σ
s =1


( )-1 r+s

 ( )2r-1 ( )2s-1 x

cos y log( )2r-1 cos y log( )2s-1 + sin y log( )2r-1 sin y log( )2s-1

Here,

cos y log( )2r-1 cos y log( )2s-1 + sin y log( )2r-1 sin y log( )2s-1 = cos y log
2r-1
2s-1

Using this,

 ( )x ,y 2 = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

(3.2)

  The first few lines are as follows.

     ( )x ,y 2 =  
( )11 x

1
cos y log

1
1

-
( )13 x

1
cos y log

1
3

+
( )15 x

1
cos y log

1
5

-+

     -
( )31 x

1
cos y log

3
1

+
( )33 x

1
cos y log

3
3

-
( )35 x

1
cos y log

3
5

+-

     +
( )51 x

1
cos y log

5
1

-
( )53 x

1
cos y log

5
3

+
( )55 x

1
cos y log

5
5

-+

     
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  When both sides of  (3.2)  are illustrated together, it is as follows. Here, the upper limit of   is 150 x 150.

Both sides almost coincide near x =1 , but do not coincide near x =0 .

  Then, we attach the parallel accelerator ( See " 13 Convergence Acceleration of Multiple Series " (A la carte) )

to the right side of  (3.2) .

f( )x,y,q =Σ
k=1



Σ
r=1

k

Σ
s=1

k

( )q +1 k+1

q k-r-s

 
k

r+s  ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

(3.2')

When this is illustrated at q =1/3 and m=30 , it is as follows. (m is the upper limit of  . Same as below.)

Both sides overlap exactly and look like spots.

Incidently, when  (3.2')  is calculated at x =-3 , y =0 , q =1 , m=50,  it is as follows.
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Since x =-3 , y =0  is a trivial zero point of ( )x,y ,  this means that the right side of  (3.2)  is analytically

continued in the negative direction beyond the line of convergence x =0 .

  Using Formula 7.3.2 , a hypothesis equivalent to the Riemann hypothesis can also be described as follows.

Hypothesis 7.3.3

  When ( )x ,y is the Dirichlet Beta function on the complex plane, the following inequality holds.

 ( )x,y 2 =Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

 > 0    for   
0 <  x < 1/2
y  2           (3.3)

  If this is illustrated, it is as follows. Green, orange, and blue are each a cutaway view of  ( )x ,y 2
 at

x =0 , 1/4 and 1/2 ,  and the red points are zeros on the critical line x =1/2 .

Other than the blue line is not in contact with the y-axis. This means that  ( )x ,y 2
 has no zero point at

x < 1/2 .  And, it is equivalent to that the Dirichlet Beta Function has no zero point except at the critical line.
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7.4 Theorems at Zeros

  As seen in the previous section , squared absolute value of Dirichlet Beta function was expressed as follows.

 ( )x ,y 2 = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

(3.2)

The following theorems hold for the zeros of this double series.

Theorem 7.4.0

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,

Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

cos b log
2r-1
2s-1

 = 0 (4.0c)

Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

sin b log
2r-1
2s-1

 = 0 (4.0s)

Proof

  Since the left side of (4.0c) is the absolute value of  a ,b , (4.0c) is natural.  (4.0s) is proved at the end

of this section.

  Interestingly, at a zero point ( )a ,b of  , each of these rows have to be all 0 .  Below, we state this as a

theorem.

Theorem 7.4.1

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,

Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

cos b log
2r-1
2s-1

 = 0 for  r =1,2,3, (4.1c)

Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

sin b log
2r-1
2s-1

 = 0 for  r =1,2,3, (4.1s)

Proof

  Let cr  be the r th row of the double series (4.1c) .  Then,

cr = Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

cos b log
2r-1
2s-1

     = 
( )2r -1 a

( )-1 r

Σ
s=1



( )2s -1 a

( )-1 s

cos b log
2r-1
2s-1

Here,

cos b log 2r-1
2s-1

 = cos b log( )2r-1 cos b log( )2s-1 + sin b log( )2r-1 sin b log( )2s-1

Using this,

cr = 
( )2r -1 a

( )-1 r

Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2r-1 cos b log( )2s-1

    + sin b log( )2r-1 sin b log( )2s-1
i.e.
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cr = 
( )2r -1 a

( )-1 r

cos b log( )2r-1 Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2s-1

+ sin b log( )2r-1 Σ
s=1



( )2s -1 a

( )-1 s

sin b log( )2s-1

At a zero point ( )a ,b of  ,

Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2s-1  = 0   ,  Σ
s=1



( )2s -1 a

( )-1 s

sin b log( )2s-1  = 0

Therefore, cr a ,b  = 0   for r =1,2,3, .

  In a similar way,  let Sr  be the r th row of the double series (4.1s) .  Then,

Sr = 
( )2r -1 a

( )-1 r

Σ
s=1



( )2s -1 a

( )-1 s

sin b log
2r-1
2s-1

Here,

sin b log
2r-1
2s-1

 = cos b log( )2r-1 sin b log( )2s-1 - sin b log( )2r-1 cos b log( )2s-1

Using this,

Sr = 
( )2r -1 a

( )-1 r

cos b log( )2r-1 Σ
s=1



( )2s -1 a

( )-1 s

sin b log( )2s-1

- sin b log( )2r-1 Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2s-1

For the same reason as the above,  Sr a ,b  = 0   for r =1,2,3,  at  a zero point ( )a ,b of  .

  From this, the following corollary follows.

Corollary 7.4.1'

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,

Σ
s=1



( )2s -1 a

( )-1 s

cos b log
2r-1
2s-1

 = 0 for  r =1,2,3, (4.1c')

Σ
s=1



( )2s -1 a

( )-1 s

sin b log
2r-1
2s-1

 = 0 for  r =1,2,3, (4.1s')

  Putting  = -b log r  in this corollary,  we obtain the following.

Corollary 7.4.1"

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,  the following expressions hold for arbitrary

real number  .

Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2s -1 +   = 0 (4.1c")

Σ
s=1



( )2s -1 a

( )-1 s

sin b log( )2s -1 +   = 0 (4.1s")
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Example
 We illustrate (4.1c"). Since the convergence of this left side is slow and it is difficult to draw an accurate figure,

we apply Knopp transformation ( See " 10 Convergence Acceleration & Summation Method " (A la carte) )  to

this as follows.

hc( )x, y, , q, m  = Σ
k=1

m

Σ
s=1

k

( )q +1 k+1

q k-s

 
k

s ( )2s -1 x

( )-1 s-1

cos y log( )2s -1 +

Here, this is illustrated at q =1/3 and m=25 .

 

  The left figure is a cutaway view at x =1/2  when y =6.0209 . We can see that hc =0 for any   in

this cutting surface.

  The right figure is a cutaway view at y =6.0209 and y =10.2437  when x =1/2 .  We can see

that hc =0 for any   in these cutting surfaces.  It is surprising that the contour lines appear innumerably in

such a twisted figure.

  Using Corollary 7.4.1' ,  we obtain the following theorem.

Theorem 7.4.2

  When ( )x ,y is Dirichlet Beta Function and c( )r is arbitrary real valued function,

if ( )a ,b = 0 ,  the following expressions hold.

Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

c( )r
cos b log

2r-1
2s-1

 = 0 (4.2c)

Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

c( )r
sin b log

2r-1
2s-1

 = 0 (4.2s)

Proof
  From  Corollary 7.4.1' (4.1c') ,

Σ
s=1



( )2s -1 a

( )-1 s

cos b log
2r-1
2s-1

 = 0 for  r =1,2,3,

Multiplying both sides by ( )-1 rc( )r /( )2r -1 a
, 

Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

c( )r
cos b log

2r-1
2s-1

 = 0 for  r =1,2,3,
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Adding up about r , we obtain (4.2c) .  In a similar way,  (4.2s)  is obtained.

Proof of Theorem 7.4.0 (4.0s)

  Particularly placed c( )r = 1  in  Theorem 7.4.2 (4.2s) ,  (4.0s)  is obtained.
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7.5 Partial Derivative of Squared Absolute Value

7.5.1 First order Partial Derivative

Formula 7.5.1
  When squared absolute value of Dirichlet beta function is

f( )x ,y = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

    =  ( )x ,y 2
(3.2)

The 1st order partial derivatives are givern as follows.

fx = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

(5.1x)

fy =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
sin y log

2r-1
2s-1

(5.1y)

Proof

  Differentiating (3.2) with respect to x

fx = -Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log ( )2r -1 ( )2s -1
cos y log

2r-1
2s-1

    = -Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

- Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2s -1
cos y log

2r-1
2s-1

Swapping r and s  in the 2nd term on the right side, 

-Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2s -1
cos y log

2r-1
2s-1

= -Σ
s=1



Σ
r=1


( )-1 s+r

 ( )2s -1 ( )2r -1 x

log( )2r -1
cos y log

2s-1
2r-1

= -Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

      cos( )-z = cos z

Substituting this for the 2nd term on the right side,  we obtain  (5.1x) .

  Next, differentiating (3.2) with respect to y

fy = -Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log ( )2s -1 /( )2r -1
sin y log

2r -1
2s -1

    = -Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2s -1
sin y log

2r-1
2s-1

+ Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
sin y log

2r-1
2s-1

Swapping r and s  in the 1st term on the right side, 

-Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2s -1
sin y log

2r-1
2s-1
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= -Σ
s=1



Σ
r=1


( )-1 s+r

 ( )2s -1 ( )2r -1 x

log( )2r -1
sin y log

2s-1
2r-1

= Σ
s=1



Σ
r=1


( )-1 s+r

 ( )2r -1 ( )2s -1 x

log( )2r -1
sin y log

2r-1
2s-1

       sin( )-z = -sin z

Substituting this for the 1st term on the right side,  we obtain  (5.1y) .

  If  Formula 7.5.1  is drawn as it is, the vicinity of the origin can not be drawn beautifully.  So, we attach the 

parallel accelerator ( See " 13 Convergence Acceleration of Multiple Series " (A la carte) )  to the right sides.

    fx( )x,y,q  = -2Σ
k=1



Σ
r=1

k

Σ
s=1

k

( )q +1 k+1

q k-r-s

 
k

r+s
( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

(5.1x')

    fy( )x,y,q  =  2Σ
k=1



Σ
r=1

k

Σ
s=1

k

( )q +1 k+1

q k-r-s

 
k

r+s
( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
sin y log

2r-1
2s-1

(5.1y')

When these are illustrated at q =1/3 and m=25 , it is as follows. Blue is fx  and orange is fy  .

It looks like fx  0 .

 

In addition, it is better to draw using (5.1x) or (5.1y)  in the area where y  is large (approximately 30 or more).

7.5.2 Necessary Condition for Local Minimum
 

Theorem 7.5.2 ( Stationary Condition )

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,  the following expressions hold .

fx a ,b  = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

log( )2r -1
cos b log

2r-1
2s-1

 = 0 (5.2x)

fy a ,b  =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

log( )2r -1
sin b log

2r-1
2s-1

 = 0 (5.2y)

Proof
  The problem of searching for the zeros of  x ,y  reduce to the problem of finding the local minimums of

f( )x ,y   = ( )x ,y 2 
.  (5.2x) and (5.2y)  are well known as stationary conditions of two-variable real

valued function.
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  The point  a ,b  satisfying the stationary condition (5.2x) and (5.2y)  is called a stationary point. When the

contour plot is drawn in 0  x  1  , 0  y  20  using the function ContourPlot  of  Mathematica ,

it is as follows.

  The red points on x =1/2  are non-trivial zeros.  Since f( )a ,b = ( )a ,b 2 = 0 ,  these are all loacl

minimums of f( )x ,y .  As far as observing this figure,  it seems that there is no stationary point other than

the local minimum point.

7.5.3 Non-trivial zeros

  The figures of fx  and fy  at x =1/2  are as follows.

 

Blue is fx , orange is fy  and red points are non-trivial zeros.  We can see the followings from the figure.

(1) fx  resembles a cosine curve and fy  resembles a sine curve.

(2) The extrema points of fx  are not generally zeros of fy . However, exceptions exist.

(3) Non-trivial zeros are the local maximum points of fx  and are zeros of fy ..

(4) Non-trivial zeros are the uphill zeros  (end of cycles) of fy .

(5) In fx , fy , the end of each cycle is a non-trivial zero point.  That is, there is no useless cycle.
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  When these results are compared with  7.1.3 , the parts of the blue are very different.  For (1), the sign of the

cosine curve is different. As an example of (3) , when the local maximum point of fx  and the zero point of

fy  around y =6 are calculated, they are as follows. Both coincide with the first non-trivial zero 6.02094 .

 

Absence of downhill zeros

  In  7.1.3 , there was a downhill zero point of imaginary part around y =139 .  What about fx , fy  ?

To see this,  we rearrange  (5,1x) and (5.1y)  along the diagonal as follows.

fx = -2Σ
r=1



Σ
s=1

r

( )-1 r+1

 ( )2r +1-2s ( )2s -1 x

log( )2r +1-2s
cos y log

2r +1-2s
2s-1

(5,1x')

fy =   2Σ
r=1



Σ
s=1

r

( )-1 r+1

 ( )2r +1-2s ( )2s -1 x

log( )2r +1-2s
sin y log

2r +1-2s
2s-1

(5,1y')

When the figure around y =139  is drawn using these ,  it is as follows.

  Non-trivial zero point 138.7501 ( right red point ) is the local maxium point of fx  and is uphill zero point

 of fy .  The left zero point 138.4572  is not drawn correctly.  but if correctly drawn,  it should also be the

uphill zero  point of  fy .  That is,  In the case of fx , fy , there are no exceptions of  (3) and (4) .

7.5.4 Second order Partial Derivative

  The 2nd order partial derivatives of squared absolute value of Dirichlet Beta function f( )x,y  is expressed

as follows respectively,.

fxx =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1 log( )2s -1 + log 2( )2r -1
cos y log

2r-1
2s-1

fxy = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log 2( )2r -1
sin y log

2r-1
2s-1

    =  fyx

fyy =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1 log( )2s -1 - log 2( )2r -1
cos y log

2r-1
2s-1

  As well known,  the discriminant for determining the stationary point ( )a ,b of f( )x,y to be the minimum

point is as follows.
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fxx( )a ,b  > 0

fxx( )a ,b  fyy( )a ,b  -  fxy( )a ,b 2 > 0

  As a result of some numerical calculations, all the stationary points satisfied two inequality without exception.

As far as this function f( )x ,y   = ( )x ,y 2 
 is concerned,  it seems that there is no stationary point

that does not satisfy these inequalities.

7.5.5 hypothesis equivalent to the Riemann hypothesis

  Last, using Formula 7.5.1 ,  we present a hypothesis equivalent to the Riemann hypothesis.

Hypothesis 7.5.5

  When ( )x ,y is the Dirichlet Beta function on the complex plane, the following inequality holds.

  fx = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

 < 0   for  
0 <  x < 1/2
y  2           (5.5)

  If this is illustrated, it is as follows. Blue is fx  1/2 , y , orange is fx  1/4 , y , green is fx  0 , y  and 

the red points are zeros on the critical line x =1/2 .  Other than the blue line is not in contact with the 

 

  Other than the blue line is not in contact with the y-axis.  This means that fx( )x , y has no zero point at 

x < 1/2 , y  2 .  And, it is equivalent to that the Dirichlet Beta Function has no zero point except at the

critical line.

2019.07.18

Kano Kono

Alien's Mathematics
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