
Analytical Proof of the Riemann Hypothesis for the Dirichlet Beta Function

Abstract

(1) The problem of Zeros of the Dirichlet Beta function is reduced to the system of transcendental equations

     consisting of 4 equations with 2 real variables, by functional equation.

(2) On the critical line,  certain 2 equations are identically 0, and the remaining 2 equations have simultaneous

    solutions.

(3) Except on the critical line, the two equations do not have simultaneous solutions in the critical strip.

    This can be proved analytically by mediating the primitive functions of these expressions.

(4) As a result of (3),  the system of transcendental equations of (1) have no solution in the critical strip except

    on the critical line. Thus, the Riemann Hypothesis for the Dirichlet Beta Function holds true.

1 Introduction

Dirichlet Beta Function

  Dirichlet Beta Function  z  is defined by the following Dirichlet series.

( )z  = Σ
r=1



e-z log 2r-1  = 
1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re z  > 1 (1.  )

  This function is analytically continued to Re z  < 1 ,  and  has trivial zeros z = -(2n -1)   ( n =

1, 2, 3 ,  )  and non-trivial zeros z = 1/2  bn   n =1,2,3, .  So, it is the Riemann hypothesis for

the Dirichlet Beta Function  that there will be no non-trivial zeros other than these.

  In addition, it is known that non-trivial zeros exist only in the critical strip 0 < Re z  < 1 . Also, the center

line Re z  = 1/2  is called the critical line .
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2 Zeros of   z  and System of Equations

  In this chapter, we consider the problem of  zeros of the Dirichlet Beta Function  z  from the point of view

of the system of equations.

Lemma 2.1

  When the set of real numbers is R  and Dirichlet Beta Functions is  z    z = x +i y ,  x ,y  R ,

 z  = 0  in 0 < x < 1   if and only if  the following system of equations has a solution on the domain.


 z   = Σ

r=1


( )-1 r-1 e-z log 2r-1   = 0 (2.1+)

 1-z  = Σ
r=1


( )-1 r-1 e- 1-z  log 2r-1  = 0 (2.1-)

Proof

  The following functional equation holds for the Dirichlet Beta Function  z .

( )z  =  
2 1-z

cos
2
 z ( )1-z ( )1-z z1,2,3,

Here, gamma function and powers of 2/  have no zeros.  Also, since the zero of cos  z/2  is z =

1 , 3 , 5 ,  ,  cos  z/2  has no zero in the 0 < Re z  < 1 .

Therefore, at the zeros of  z ,  the following expressions have to hold.

 z  =  1-z  = 0 0 < Re z  < 1

Representing  z  ,  1-z  by the Dirichlet series respectively,  we obtain the desired expressions.

Note1

 Since there are 2 equations for 1 complex variable in the lemma, this system of equations is an overdetermined

system. Such a system of equations generally has no solution. What forces this overdetermined system is the

functional equation clearly.

Note2

(1) When x =1/2 ,  the overdetermined property disappears.  Because,


 1/2+i y  = Σ

r=1


( )-1 r-1 e- 1/2 + iy  log 2r-1   = 0 (2.1+)

 1/2-i y  = Σ
r=1


( )-1 r-1 e- 1/2 - iy  log 2r-1  = 0 (2.1-)

i.e.


 1/2+i y  = Σ

r=1



2r -1

( )-1 r-1 

 cos y log 2r -1  - i sin y log 2r -1  = 0

 1/2-i y  = Σ
r=1



2r -1

( )-1 r-1 

 cos y log 2r -1  + i sin y log 2r -1  = 0

At zero point  1/2 , y ,

-Σ
r=1



2r -1

( )-1 r-1 

sin y log 2r -1  = Σ
r=1



2r -1

( )-1 r-1 

sin y log 2r -1  = 0
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So,  (2.1+) and (2.1-)  become substantially the same equation.

(2) When x 1/2 ,  This system of equations is an overdetermined system.

    Even though (2.1+) and (2.1+)  are different equations, they must share one complex number. The Riemann

hypothesis says that such a thing will not happen.

  Replacing z  with 1/2+z  in  Lemma 2.1 ,  we obtain the following equivalent lemma.

Lemma 2.1'

  When the set of real numbers is R  and Dirichlet Beta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.


 2

1
+z  = Σ

r=1



2r -1

( )-1 r-1

e-z log 2r-1  = 0 (2.1'+)

 2
1

-z  = Σ
r=1



2r -1

( )-1 r-1

ez log 2r-1  = 0 (2.1'-)

Note

(1) The known non-trivial zeros are moved parallel onto the new critical line Re z  = 0

(2) When -1/2 < x < 1/2 ,  these series conditionally converge .

(3) When x =0 ,  the overdetermined property disappears.

(4) When x 0 ,  if  there are zeros, the set consists of the following four.

a  ib , -a  ib ( ) -1/2 < a < 1/2 

Hyperbolic Function Series
  Lemma 2.1 '  is equivalent to the following

Lemma 2.2

  When the set of real numbers is R  and Dirichlet Beta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.


c z  = Σ

r=1



2r -1

( )-1 r-1

cosh z log 2r -1  = 0 (2.2c)

s z  = Σ
r=1



2r -1

( )-1 r-1

sinh z log 2r -1  = 0 (2.2s )

Proof
  From  (2.1'+) , (2.1'-) ,

2
1
  2

1
-z + 2

1
+z  = Σ

r=1



2r -1

( )-1 r-1

2
ez log 2r-1  + e-z log 2r-1

 = Σ
r=1



2r -1

( )-1 r-1

cosh z log 2r -1  = 0
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2
1
  2

1
-z - 2

1
+z  = Σ

r=1



2r -1

( )-1 r-1

2
ez log 2r-1  - e-z log 2r-1

 = Σ
r=1



2r -1

( )-1 r-1

sinh z log 2r -1  = 0

Describing these as c( )z ,s( )z  respectively,  we obtain the desired expressions.

Conversely, by adding or subtracting these,  (2.1'+) , (2.1'-)  are obtained.

Hyperbolic Function Series (real part, imaginary part)

Theorem 2.3

  When the set of real numbers is R  and Dirichlet Beta Function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.

uc x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 cos y log 2r -1  = 0

vc x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1   = 0

us x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1  = 0

vs x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 sin y log 2r -1  = 0

Proof

cosh( )x+iy  = cosh x cos y + i sinh x sin y

sinh( )x+iy  = sinh x cos y + i cosh x sin y
Replacing x with x log 2r -1  and y with y log 2r -1  respectively,

cosh zlog 2r -1  =    cosh xlog 2r -1 cos ylog 2r -1

+ i sinh xlog 2r -1 sin ylog 2r -1

sinh zlog 2r -1  =    sinh xlog 2r -1 cos ylog 2r -1

+ i cosh xlog 2r -1 sin ylog 2r -1
Substituting these for (2.2c) , (2.2s)  respectively,

c z  = Σ
r=1



2r -1

( )-1 r-1

cosh z log 2r -1

    = Σ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 cos y log 2r -1

+ iΣ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1
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s( )z  = Σ
r=1



2r -1

( )-1 r-1

sinh z log 2r -1

    = Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1

+ iΣ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 sin y log 2r -1

Describing the real and imaginary parts as uc x ,y  , vc x ,y  , us x ,y  , vs x ,y  respectively,
we obtain the desired expressions.

Overdetermined System
 Since there are 4 equations for 2 real variable in Theorem 2.3 , this system of equations is an overdetermined

system. Such a system of equations generally has no solution.

Zeros on the Critical Line 

  However, such a system of equations may exceptionally has solution. That is the case when x =0 .  Note

that x =0  is the critical line of function 1/2+z . Substituting x =0  for the equations in Theorem 2.3

uc 0,y  =  1Σ
r=1



2r -1

( )-1 r-1

cos y log 2r -1  = 0

vc 0,y  =  0Σ
r=1



2r -1

( )-1 r-1

sin y log 2r -1  = 0

us 0,y  =  0Σ
r=1



2r -1

( )-1 r-1

cos y log 2r -1  = 0

vs 0,y  =  1Σ
r=1



2r -1

( )-1 r-1

sin y log 2r -1   = 0

Since vc 0,y  , us 0,y are equal to non-existent, the overdetermined property disappears.  As the result,

0 = uc 0,y - i vs 0,y  = Σ
r=1



2r -1

( )-1 r-1

 cos y log 2r -1  - i sin y log 2r -1

      = Σ
r=1



2r -1

( )-1 r-1

 cos y log 2r -1  + i sin y log 2r -1

i.e.

0 = Σ
r=1



2r -1

( )-1 r-1

e-y log 2r-1  = Σ
r=1



2r -1

( )-1 r-1

ey log 2r-1

That is, they reduce to the case of x =0  in  Lemma 2.1'.  These solutions are zeros on the critical line.

  It is known that  non-trivial zeros of the Dirichlet Beta Function do not exist up to very large y values  in the

critical strip ( -1/2 < x < 1/2  in this paper ) . So, in the following examples, y =10011005.3 is used.

  When x =0 ,  uc  vs  are drawn as follows.  Blue is uc  and  orange is vs . The points ( red ) where these

intersect on the y -axis are the zeros of  1/2z .
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 Magenta is vc  and cyan is us .  They overlap on the y -axis.  Of course,  these 2 straight lines also pass

through the red points.

Zeros outside the Critical Line

  If x  deviates even slightly from 0 ,  vc , us  cease to be straight lines.  For example, when x =0.000001 ,

 

  As the result,  the property of overdetermination is restored.  For example, when x =0.25 , uc  vs  are

 

The amplitudes of vc , us  are expanding,  and the 4 curves are unlikely to intersect at one point on the y -axis.

  When x =0.499999  (near the boundary of the critical strip) , uc  vs  are drawn as follows.
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The peaks and valleys of uc (blue) and us (cyan) are almost the same,  and the functions themselves of vc

(magenta) and vs (yellow) are almost the same. These results are due to the fact that the difference between

cosh x log 2r -1  and sinh x log 2r -1  decreases as x  increases.

Note

  When x  0.5 , in the interval where y  is very large,  it becomes as follows.

uc x ,y    us x ,y    ,   vs x ,y    vc x ,y

 Such a drawing is not possible using the series in Theorems 2.3 . So, let x=0.499999. Then,  uc  vs  for

y =200001200005  are drawn as follows.

 

uc  and us  overlap exactly, and vs  and vc  also overlap exactly. As the result, only us (cyan)  and

vc (magenta) are visible.
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3 Lemma about a System of Equations

  Theorem 2.3  is equivalent to that the following 6  pairs have a common solution.  Each pair is one of the

necessary conditions for  1/2z  to have zeros.


uc = 0

vc = 0
   ,   

uc = 0

us = 0
,   

uc = 0

vs = 0
  ,   

vc = 0

us = 0
   ,   

vc = 0

vs = 0
   ,   

us = 0

vs = 0

Therefore, to prove the Riemann hypothesis for the Dirichlet Beta function,  it is sufficient to show that any one

of these pairs does not have a solution such as x0 .

  The most interesting of these is vc = 0  and us = 0  pair. The reason is as follows.

(1) When x =0 , vc = us = 0   for any  y .

(2) vc and us  series share a coefficient part sinh x log 2r -1 / 2r -1   that has a large effect on

      the amplitude.

(3) vc and us  series have a first term  r =1  of 0 .

  In particular, from (3), we can change the first terms of the vc and us  series from r =1  to r =2 . That is

vc x ,y  =  Σ
r=2



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1 (3.1c)

us x ,y  =  Σ
r=2



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1 (3.1s)

  As the result,  we can prove the following lemma for both expressions.

Lemma 3.1

  When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations

has no solution such that x 0 .


vc x ,y  =  Σ

r=2



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1   = 0     (3.1c )

us x ,y  =  Σ
r=2



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1  = 0     (3.1s )

Proof

1. Since the first term of the series (3.1s)  is r =2 ,  term-wise integration is possible for both x  and y .

  So, integrating this term by term from 0  to y  with respect to y , 

∫us( )x,y dy = Σ
r=2



2r -1 log 2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1     (3.1sy)

When x =0.25 , y =1001.11005.4 , the 2D figures of  (3.1c) , (3.1s) and (3.1sy) are drawn on the next

page.  Magenta is vc 0.25 ,y , yellow is ∫us 0.25 ,y dy , and cyan is us 0.25 ,y .
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The y coordinates of the peaks and valleys of vc 0.25 ,y (magenta)  and ∫us 0.25 ,y dy (yellow)

almost match.  For example, the last valleys of vc 0.25 ,y and∫us 0.25 ,y dy are y =1005.17 and

y =1005.20  respectively, and the difference between them is as small as 0.03 . This is due to the fact that

both terms are sin y log 2r -1 .

The y coordinates of the peaks and valleys of ∫us 0.25 ,y dy (yellow)  and  the zeros of us 0.25 ,y

(cyan)  exactly match. This is natural since the latter is the derivative of the former with respect to y .

So, the y coordinates of the peaks and valleys of vc 0.25 ,y (magenta)  and the zeros of us 0.25 ,y

(cyan) almost match. This also holds true for any -1/2 < x < 1/2  , x  0 .

2. Since the first term of the series (3.1c) is r =2 ,  term-wise integration is possible for both x  and y .

So, integrating this term by term from 0  to y  with respect to y ,

∫vc( )x,y dy = -Σ
r=2



2r -1 log 2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1 (3.1cy)

When x =0.25 , y =1001.11005.4 , the 2D figures of  (3.1c) , (3.1s) and (3.1cy) are drawn as follows.

Magenta is vc 0.25 ,y , gray is -∫vc 0.25 ,y dy , and cyan is us 0.25 ,y .

The y coordinates of the peaks and valleys of us 0.25 ,y (cyan)  and -∫vc 0.25 ,y dy (gray) almost

match.  For example,  the first peaks of us 0.25 ,y and -∫vc 0.25 ,y dy  are y =1001.37 and y =

1001.35  respectively,  and the difference between them is as small as 0.02 . This is due to the fact that

both terms are cos y log 2r -1 .
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  The y coordinates of the peaks and valleys of -∫vc 0.25 ,y dy (gray)  and  the zeros of vc 0.25 ,y

(magenta)  exactly match. This is natural since the latter is the derivative of the former with respect to y .

  So, the y coordinates of the peaks and valleys of us 0.25 ,y (cyan)  and the zeros of vc 0.25 ,y

(magenta) almost match. This also holds true for any -1/2 < x < 1/2  , x  0 .

3.  As the result of 1 and 2, for any -1/2 < x < 1/2  , x  0 ,  the zeros of vc x ,y and the zeros of

us x ,y  exist alternately on the y- axis. That is, vc x ,y and us x ,y do not have common zeros in

-1/2 < x < 1/2  , x  0 .

Q.E.D.
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4 Proof of the Riemann Hypothesis for the Dirichlet Beta Function

  In this chapter, we prove the Riemann hypothesis for the Dirichlet Beta Function  by summarizing the above.

Theorem 4.1 ( Riemann Hypothesis )

  Let  z  be the function defined by the following Dirichlet series.

( )z  = Σ
r=1



e-z log r = 
1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re z  > 1 (1. )

This function has no non-trivial zeros except on the critical line Re z =1/2 .

Proof

  First, by the functional equation, the solution for  z  = 0  is consistent with the solution of the following 

system of equations. ( Lemma 2.1 )


 z   = Σ

r=1


( )-1 r-1 e-z log 2r-1   = 0

 1-z  = Σ
r=1


( )-1 r-1 e- 1-z  log 2r-1  = 0

0 < Re z  < 1

 Second, by translation,  the solution for  1/2  z  = 0  is consistent with the solution of the following

system of equations. ( Lemma 2.1 ' )


 2

1
+z  = Σ

r=1



2r -1

( )-1 r-1

e-z log 2r-1  = 0

 2

1
-z  = Σ

r=1



2r -1

( )-1 r-1

ez log 2r-1  = 0
-

2

1
 < Re z  < 

2

1

Third, by addition and subtraction,  the solution for  1/2  z  = 0  is consistent with the solution of the

following system of equations. ( Lemma 2.2 )


c z  = Σ

r=1



2r -1

( )-1 r-1

cosh z log 2r -1  = 0

s z  = Σ
r=1



2r -1

( )-1 r-1

sinh z log 2r -1  = 0

-
2
1

 < Re z  < 
2
1

Last, expressing these by real and imaginary parts, we obtain the following theorem.

Theorem 2.3 (reprint)

   When the set of real numbers is R  and Dirichlet Beta functions is  z    z = x +i y ,  x ,y  R ,

 1/2 z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on

the domain..

uc x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 cos y log 2r -1  = 0

vc x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1   = 0

us x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1  = 0

vs x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log 2r -1 sin y log 2r -1  = 0
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  According to this theorem, if a system of equations consisting of any two of these equations does not have a

solution in the critical strip except on the critical line,  the Riemann hypothesis holds.

So, if we focus on the pair vc x ,y = us x ,y = 0 ,  both of these first terms (r =1)  are 0 . Therefore,

we can change the index of the first term from r =1  to r =2 .

Then, vc x ,y  and us x ,y  can be integrated term by term from 0  to y  with respect to y .

In the previous chapter,  Lemma 3.1 was proven using this fact.

Lemma 3.1 (reprint)

When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations

has no solution such as x 0 .


vc x ,y  =  Σ

r=1



2r -1

( )-1 r-1

sinh x log 2r -1 sin y log 2r -1   = 0     (3.1c )

us x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log 2r -1 cos y log 2r -1  = 0     (3.1s )

Thus, according to Theorem 2.3 ,  1/2  z  has no zeros other than x = 0  in -1/2 < x < 1/2 .

That is,  Dirichlet Beta Function  z  has no zeros other than x = 1/2  in 0 < x < 1 .

Q.E.D.
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