12 Dirichlet Eta type Cosine Series

12.1 cos(y logr)

Let I''Y are positive numbers respectively, and consider the following function C( r ,y) .

c(r,y) =cos(ylogr) (1.1)
When Yy = 3.02157, 9.06472, 14.1347, these 2D figures for =1~ 64 are drawn as follows.
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Observation of these rewveals the following.
(1) c(r,y) is avariable periodic function with respect to I .

(2) The number of periods within the same interval is approximately proportional to y.

-1-



Below, we consider this function in more detail.

Ampilitude (A)
The amplitude of this functionis A=1.

Period ( P )
This function is a periodic function. The first period starts at Oz and ends at 27, the second period starts

at 27 and ends at 4, so

ylogro =07z , ylogr, = 27 , ylogr, =4z, - ,ylogr, = 2nz , -
From these,
ro = eOdy ’ r, = e27dy ’ r, = e4dy e, = e2n7r/y ’
Therefore, the function c is separated into the following unit intervals.
[eo;r/y , e27r/y) ’ [ez;r/y , e47,-/y) e [e(Zn—Z)zr/y 1 e2n7r/y) ’
Each of these has one mountain and one valley. We will call these the 1 st period, the 2 nd period, . i.e.

P(n ’y) — I:e(Zn—Z)ir/y e 2n7r/y>
For example, if y=3.02157, the 1 st period [e Oﬁ/y, e Zﬂy) and the 2 nd period [e Z”/y, e4"'/y) are
P(1,3.02157) =[1,8) , P(2,3.02157) =[8, 64)
If these two periods are drawn in succession, it is as follows. The left is normal scale and the right is semi-
logarithmic scale. Since these are cosine functions, one cycle is from peak to peak, and there are two peaks

in these figures except for the end point.

c y = 3.02157 c y = 3.02157
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Wavelength (A1)
The wawelength are the length of these periods. That is,

eoﬂ-/y(ez;ﬂy _ 1) 1 ezﬂ-/y(ez;ﬂy _ 1) e(zn—Z)ﬂ/y(ezﬁ/y_ 1)

The wawelength is € 2y times longer than the previous period in each period. So, this function is a variable

periodic function. That is,
/’t(n y) - e(Zn—Z);r/y( e27r/y _ 1)

In the figure above, the wavelengths of the 1 st and the 2 nd periods of C( r,y ) are
A(1,3.02157) =7 , A(2,3.02157) = 56

However, C( r,y) drawn on a semi-logarithmic scale looks like a fixed period at first glance.



When N =1, Y can be back calculated from A.

_ 2r
Y7 log(2+1)

From this,
When ﬂ.(l,y)=7, y = W = 3.02157
2
when A(L,y)=1. y = é = 9.06472
27 = 14.1347

wnen A(1,Y)=0.559743,  y = 1 eren
A 3Dview of A(Nn,Yy ) at N # Lis shown on the left. And the contour plots at A=0.5, 1=1.0, 1=2.0

are shown on the right.
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From these figures, we can see that the slope of the ﬂ( n,y ) contour decreases as N increases. The reason

why is,
2
T e@n-2aly(g24y_1) 5 g for n,y >0

i/1(n,y) =—

on
Using this contour plot, we can find the N,y pair that gives the desired A.

Mountain (Mc)
Since C( r,y) is a cosine function, there are half mountains at both ends of the period, but the tip is adopted.

Mc(n,y) = e(2"-2)#

In the figure above, the mountains of the 1 st and the 2 nd periods of C( r,y ) are
Mc(1,3.02157) =1 , Mc(2,3.02157) =8

Valley (\c)
Since C( r,y) is a cosine function, there is a valley in the middle of the period plotted on a semi-logarithmic

scale

ve(n,y) = eV



In the figure above, the valleys of the 1 st and the 2 nd periods of C( r,y ) are
Ve(1,3.02157)= 2.82843 , Vc(2,3.02157)= 22.6275

Zeros (Zc)
Since C( r y) is the cosine function, the zeros are at 1/4 and 3/4 of the period plotted on a semi-

logarithmic scale.

{ (4n-3)7z (4n—l)7r}
Zch,y) =le % e ¥

In the figure above, the zeros of the 1 st and the 2 nd periods of C( I,y ) are
Zc(1,3.02157) ={1.68179, 4.75684}
Zc(2,3.02157) = {13.4544, 38.0548}

Near zeros (Xc)
When the variable I' of C(I’ y) is a discrete variable, we will call the integer I' within 0.5 from the

zero point the neighborhood of the zero point. That is,
(4n—3)7r) ( (4n-1)n) }
% ) Round\e &

Xc(n,y) = {Round(e
In the figure above,
Xc(1,3.02157)={2,5} , Xc(2,3.02157)={13, 38}

Riemann Zeta type Cosine Series ( when y =14_1347-- )
Until now, we have treated I' as a continuous variable in the function C( r y) but in this section

we consider the following Riemann Zeta type cosine function with respect Y

uy) = écos(ylog r)

I' has to be a discrete variable.

Then,
185 are drawn in succession,

For example, when Y1=14.1347-, r=1,2, ,48 and r=49, - ,

it is as follows.
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In the left figure, this sum differs greatly from

) is the sum of the areas of magenta.

The function value of (1.2
the integral value ofOn the other hand, in the right figure this sum is close to the integral value of (1.1)



Divergence
In the right figure, the area seems to be zero due to cancellation of plus and minus, but it is not. Because,

the interval between waves expands and eventually becomes infinite. So, the series in|(1.2)|diverges.

In fact,

uy) « /100cos(ylog rydr

But, the right hand side becoms
: I + 1 | 00
/ cos(ylogr)dr = r {cos(ylogr)+ysin(ylogr)}
1

1+y2 1

+00

Note

(1.2) becoms only an asymptotic expansion even if it is accelerated.



12.2 + cos(ylogr)

Let I,y are positive numbers respectively, and consider the following function C( r ,y) .

c@r,y) = D" Heos(ylog r)

(L ] is floor function )

2.1)

When Yy = 3.02157, 9.06472, 14.1347, these 2D figures for =1~ 64 are drawn as follows.
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Unlike the previous section, C( r ,y) is a discontinuous function with respect to I' . However, it is the same

as the previous section that C( ry ) is a variable periodic function and that the number of cycles in the same

interval is approximately proportional to Y .

Amplitude (A)

The amplitude of this function is

A = [DH] =1



Period (P)
The period of this function is the same as in the previous section, That is,
P(n y) — I:e(Zn—Z)ﬂ/y e2n7r/y)
For example, if y=3.02157, the 1 st period [e Oﬂly, e 2”/y> is
P(1,3.02157) =[1, 8)

This is drawn as follows. The left is normal scale and the right is semi-logarithmic scale.
¢ y = 3.02157 c y = 3.02157
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Wavelength (1)
The wawelength of this function is the same as in the previous section, That is,
A,y) = e(zn-z)ﬁ/y( 027y _ 1)
In the figure abowe,

A(1,3.02157) = 7

Mountain or Valley (MVc)

Unlike the previous section, this function C( r,y) changes sign. For this reason, mountains and valleys
exist at most twice as many as in the previous section.
(2n-2)z  (2n-1)x
MVc(n,y) = {e yoe Y }

The mountain or valley is determined by the sign of ¢(r,y) at r =MVce(n,y) .

In the figure abowe,

MVc(1,3.02157) = {1, 2.8284}
{c(1,3.02157),c(2.8284 ,3.02157)} =(1,1)

So, both the former and the latter are mountains.

Zeros (Zc)
The zeros of this function are the same as in the previous section, That is,
(4n-3)7z (4n-1)7z }

Zc(n,y)={e e ¥

In the figure abowe,

Zc(1,3.02157) ={1.68179, 4.75684}




Constriction (Xc)
Since this function C( r ,y) changes sign, the zero point looks like a constriction. So, we will call the

integer I' within £0.5 from the zero point constriction. That is,
(4n-3)7

{ (4n-1)7z }
Xc(,y) = Round(e 2y ),Round(e 2y )

In the figure abowe,

Xc(1,3.02157)={2,5}

Dirichlet Eta type Cosine Series ( when y =14.1347 - )

We consider the following Dirichlet Eta type cosine function with respect Y .

uQy) = 21 D" *cos(ylogr) 2.2)
r:
Then, I has to be a discrete variable.

For example, when Y1=14.1347-, r=1,2,- ,38 and r=39, - ,118 are drawn in succession,

it is as follows.
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The function value of (2.2) is the sum of the areas of magenta. In the left figure, this sum differs greatly from
the integral value of{(2.1)] On the other hand, in the right figure this sum is close to the integral value of (2.1).

Convergence ?

The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions
seems to cancel out to zero. As a trial, when Y1=14.1347 -, the area between each constriction in the

11 th and the 25 th periods are calculated as follows.
The 11 th period XC(]J.,yl) = {95,119} , ﬂ(]_’L,yl) =47.7

118
Up1(y1) = r%5(—1)'r'1cos(ylog ry =0.0807158

The 25 th period XC( 25, yl) = {48033,59988} /1( 25, yl) = 24058.2

59987

Uss(y1) = % (-1 *cos(ylogr) = -0.0000160392

r=48033

Certainly, the area between two constrictions approaches O as I increases.

To find out the cause of this, let us compare the enlarged images near I =95 and r=48033.



¢ Near r=95 c Near r = 48033
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Then, at a glance, it can be seen that the scale of the vertical axis is an order of magnitude. Why? The reason
is simple. Because, the wavelength becomes longer as I' moves away from the origin. Since the amplitude is

1, the longer the wavelength, the slower the slope of the variable-length cosine curve. In fact, if we differentiate

the unsigned part of with respectto I ,
0 .
—c(r,y) = —lsm(ylog r)
or r

Let r > then ac(r,y)/or - O.

Thus, the area between two adjacent constrictions approaches O as I' increases.

Maximum Error

Howewer, even so, this series u(y ) is a divergent series. i.e. it just oscillates and never converges. Therefore,
if this series is truncated at mountain or valley, there will be a maximum error of +0.5 . In fact, in the example
above, truncating I' at the 30 th period valley of 495526 yielded an error of 0.499996 - as follows.
In addition, the correct value is the Dirichlet Eta function value Re( 77( 0+114.1347 - ) ) = -1.44377 .

uly_, m_] := > (-1)"*Cos[yLog[r]]

r=1
N[MVc[30, y,]]  {396771., 495526.}

N[uly;, 495526]] N[Re[DirichletEta[1y:]]]

~0.943774 -1.44377
-0.943774 - (-1.44377) = 0.499996

Minimum Error
On the other hand, a better approximation is obtained if the series is truncated at an appropriate constriction.
In fact, in the example above, when I was truncated at the 30 th period constriction 443408, it was in
consistent with the Dirichlet Eta function value Re( 77( O+i14.1347 - ) ) = -1.44377 .
Xc[36, y41] {443 408, 553771}

N[u[y,, 443408]] ~1.44377



Summation Method and Convergence Acceleration

After all, this series oscillates within an error of £0.5. A summation method insists that an error of
10.5 should be regarded as O on average. One of the simplest summation methods is Euler Transformation.
The Euler transformation accelerates the convergence of the series and also applies the summation method.

Applying the Euler transformation to (2.2),

m k
uy,m) = gl r;l 2:'+1 ( i ) D1 cos(ylogr) 2.2")

And the 2D figure is

u

I AV

ot

The value of (2.2') at Y1=14.1347 - in this figure is as follows. It is in consistent with the Dirichlet Eta
function value Re( 77(O+i 14.1347 - ) ) :
N[uly:, 40]] -1.44377
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12.3 + cos(ylogr) / r*x

Let I, X,y are positive numbers respectively, and consider the following function C( r,X ,y) .

G
c(r,x,y) = —XCOS(y|Og r (L J is floor function ) 3.1
r

When X =1/2,y = 3.02157, 9.06472, 14.1347, these 2D figures for r =1~ 64 are drawn

as follows.
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c v = 14.1347

Amplitude (A)
The amplitude of this function is
(GO

AC,x) = »
r
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When X >0 lim1/r*=0. Therefore, this function represents a damped oscillation.

r—o

For example, when X=1/2 ,y=3_.02157, the 1st period [eoﬂy , 627/)/) of ¢(r,X,y) is drawn
as follows. The left is normal scale and the right is semi-logarithmic scale.
c y = 3.02157 c y = 302157
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Period (P)
The period of this function is the same as in the previous section, That is,
P(n y) — I:e(Zn—Z)zz'/y e2n7r/y)

In the figure abowe,

P(1,3.02157) =[1, 8)

Wavelength (1)
The wawelength of this function is the same as in the previous section, That is,
/1([‘] y) — e(2n—2);r/y( e 24y _ 1)
In the figure abowe,

A(1,3.02157) = 7

Mountain or Valley ( M\Vc)
The mountains or valleys of this function are the same as in the previous section, That is,
(2n-2)z  (2n-1)z
MVc(n,y) = {e yooe Y }
In the figure abowe,

MVc(1,3.02157) = {1, 2.8284}

1 1
{C( 1 Y 3.02157) , C(2.8284 e 3.02157) } ={1,0.594603}

So, both the former and the latter are mountains.

Zeros (Zc)
The zeros of this function are the same as in the previous section, That is,
(4n-3)7z (4n-1)x }

Zc(n,y)={e e ¥

In the figure abowe,

Zc(1,3.02157) ={1.68179, 4.75684}
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Constriction (Xc)
The constrictions of this function are the same as in the previous section, That is,
(4n-3)xz

{ (4n-1)z }
Xc(,y) = Round(e 2y ),Round(e 2y )

In the figure abowe,

Xc(1,3.02157)={2,5}

Dirichlet Eta type Cosine Series (when x=1/2 ,y =14_1347- )

We consider the following Dirichlet Eta type cosine function with respect X,y .

u,y) = Z e ) ——=—cos(ylogr) (3.2)

Then, I has to be a discrete variable.

For example, when X=1/2 ,y=14.1347 -, r=1,2, ,38 and r=39, - ,118 are drawn in

succession, it is as follows.
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The function value of (3.2) is the sum of the areas of magenta. In the left figure, this sum differs greatly from
the integral value of|(3.1).|On the other hand, in the right figure this sum is close to the integral value of (3.1).

Convergence
The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions
seems to cancel out to zero. As a trial, when X=1/2,y=14.1347 - , the area between each constriction

in the 11 th and the 25 th periods are calculated as follows.
The 11 th period XC(ll,yl) = {95,119} , ﬁ(ll,yl) =47.7

1 1s (=11

ull(z ,yl) =2 ¢ 3 cos(yilogr) = 0.0080004
r=95 r

The 25thperiod ~ Xc(25,y,) = {48033,59988} , A(25,y;) = 24058.2

Uzs( : ) = 5€§87 D D™

FRRLY Rl vy ——2-—cos(y,logr) = -4.33932x107®

Comparing the two, the area between the two constrictions rapidly converges to O as I increases. The reason
for this is clear. Even when the amplitude is 1, the area between constrictions decreases as I increases.

Moreover, the amplitude approaches O . The synergistic effect forces the area between constrictions to approach

-13-



0 even more rapidly. In this case, 2, 1/r" does not have to converge. It only needs to be lim1/r*= 0.
r— o
Thus,|(3.2) [converges if X >0.

Minimum Error

Therefore, in calculating the series U(X ,y) , @ better approximation must be obtained by truncating I at an

appropriate constriction.
In fact, when X=1/2,Yy,1=14_.1347 -, if I was truncated at the 25 th period constriction 48033 and

compared with the Dirichlet Eta function value Re ( 77( 1/2+i14.1347) ) = 0, both coincided up to 6

decimal places.

T (-nt
ulix , ¥y ,m] :=Z—xCos[yLog[r]]
r=1 r‘

Xc[25,y,] {48033, 59988}

1
N[u[—, Vi, 48933]] _4.61282 x 1077
2

Maximum Error

This series U(X ,y) converges. However, if this series is truncated at mountains or valley, an error of at most

+1/r*x1/2 will occur. In fact, in the example above, when I was truncated at the valley 53679 of the

25 th period, both coincided up to 2 decimal places. This error is 4600 times larger than the minimum error

above.

N[MVc [25, y11] [42980.8, 53678.6}

1 1 1

N[u[—,yi, 53679” N[—x—]
2 5367912 2

_0.00215807 0.00215808
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12.4 Ampilitude of u(y)
The Dirichlet-Eta type cosine function and the series dealt with in Section 2 were as follows.

c(r,y) = (—1)Lr_1JCOS(y|Og r (L ] is floor function ) 2.1)
uQy) = il(—l)r'lcos(ylog r 2.2)

In this section, we study the amplitudes (mountains, valleys, zeros) of (2.2) using (2.1) .

As a numerical example, drawing the real part of 77( O,y) near Y =110 together with u(y ) is as follows.

160 F i
\ | /\ /\ B Re(1(0, )

109 110 11 \QE' — u(y, 115)

(&)

Both are almost the same, but 77( O,y) with high precision is used in the following calculations.

12.4.1 Mountain of u(y) ( neary=110)
Accurate calculation of the mountain near Y =110 using 77(0,y ) is as follows.
FindMaximum[Re[n[©, Y]], {Y, 118}]
[12.1896, {y —» 109.867}} ¥m := 109.867
Drawing C( r ,yM) by (2.1) is as follows. The horizontal axis is I . Cyan is drawn as a continuous variable

and magenta as a discrete variable. The sum of the area of magenta becoms mountain 12.1896 of (2.2) .

o
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i 10 20 30 40 50
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i

10l SR N=E

In this figure, three intervals are observed in which magenta is continuously positive. That is,

(1) r = 28 ~ 43 are positive for 16 consecutive terms. These are included in the 59 ~66 th period.
The wavelengths of the periods are 1.62 ~ 2.42, and the central value is 2/1 .

(2) r = 10 ~ 13 are positive for 4 consecutive terms. These are included in the 41 ~45 th period.
The wawelengths of the periods are 0.58 ~ 0.73, and the central value is 2/3 (=0.67) .

-15-



(3) r =5 ~ 8 are positive for 4 consecutive terms. These are included in the 30 ~37 th period.

The wawelengths of the periods are 0.31 ~ 0.46, and the central value is 2/5 (=0.4) .
After ' = 51, the positive and negative gradually balance out, so these three continuous intervals almost
determine the height of the mountain near Y =110 . In addition, the same sign continues in the vicinity of the
wawelength 1=2/(2k-1) k=1,2,3, - . Iwill explain this reason by the enlarged view of|(2) (the central

value is 2/3 ) which is the easiest to understand.

14 12 b3 14

—058F

—1.0 -
When r=11, c(11,109.867) = (-1)'*%cos(109.867 log11) =+0.903

When r=11+2/3, ¢(11.67,109.867) = (-1)'**-¢7)cos( 109.86710g 11.67) =+0.966
When r=11+3/3, c(12,109.867) = (-1)'**c0s(109.867 log12) =- (-0.953)

i.e. because the end of the half wavelength is close to the end of the interval of length 1 . This also applies to

A=2/5,2/7 .

12.4.2 Valley of u(y) ( neary=109)
Accurate calculation of the valley near Y =109 using 77( O,y) is as follows.

FindMinimum[Re[r [0, v]], {V, 109}]
{-11.9239, {y - 108.893]]1 vy, i=168.893
Drawing C( r ,yv) by |(2.1)] is as follows. The horizontal axis is I' . Cyan is drawn as a continuous variable

and magenta as a discrete variable. The sum of the area of magenta becoms valley —11.9239 in [(2.2)]

—1_0 F —— - —

In this figure, three intervals are observed in which magenta is continuously negative. That is,
(1) r = 29 ~ 42 are negative for 14 consecutive terms. These are included in the 59 ~65 th period.
The wawelengths of the periods are 1.69 ~ 2.39, and the central valueis 2/1 .
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(2) r = 10 ~ 13 are negative for 4 consecutive terms. These are included in the 41 ~45 th period.
The wavelengths of the periods are 0.60 ~ 0.75, and the central value is 2/3 (=0.67) .

(3) r = 6 ~ 8 are negative for 3 consecutive terms. These are included in the 33 ~36 th period.
The wavelengths of the periods are 0.38 ~ 0.45, and the central value is 2/5 (=0.4) .

After r = 50, the positive and negative gradually balance out, so these three continuous intervals almost

determine the depth of the valley near Yy =109 .

Re: Zeros of u(y) ( neary=109.5)

Accurate calculation of the zero near Y =109.5 using 77( 0,y ) is as follows.

FindRoot [Re[n[©, ¥]], {Vv, 189.5}]
{y —109.373} Yz 1=1089.373

And drawing C( r,yz) by (2.1) is as follows.

— 1.0 | - - - = —

The same sign continues near wavelengths A = 2/1, 2/3 . However, the positive and negative values are

canceled as a whole, and the total area of magentaat = 1 ~ 126 is 0.02 . So, the sum of the areas

after r =126 becomes —0.02.

12.4.3 Amplitude of u(y) and Variable y
fu(y) (=Re{n(0,y)}) at y=108~112 andat y =501~505 are drawn side by side,

it is as follows. The left is the former and the right is the latter.
Re(n(0.y) Re(n(0.y)
40}
10F
30f
a5t 20k

10 F

109 110 1M 112

502 503 504 505

-10F

10+ -20F

Comparing the two figures reveals the following.
(1) The amplitudes at Y =501~505 are generally larger than those at Yy =108~112.
(2) The cycles at Y =501~505 are generally shorter than those at Y =108~112.
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Both of these are difficult to prove analytically. However, a graphical proof ofIElis possible using C( r,y )
It is shown below.

Accurate calculation of the mountain near Y =503.5 using 77( 0,y ) is as follows.
FindMaximum[Re[n[©, VY]], {Yy, 583.5}]
{39.282, {y > 503.409}} ym 1= 503.489

Drawing C( r ,yM) by |(2.1)| is as follows. The horizontal axis is I' . Cyan is drawn as a continuous variable
and magenta as a discrete variable. The sum of the area of magenta becoms mountain 39.282 in[(2.2)].

DMM |

sk 15D 55 7l \11’5'

ULV

(1) The wavelength in this figure are 1.83 ~ 2.20 . These are included in the 400 ~415 th period.
r = 146 ~ 176 are positive for 31 consecutive terms. The intenval length is about twice one of [12.4.1 (1)|

An enlarged views of the wavelength around 2/3 and 2/5 are as follows.

¢ Near A=2/3 ¢ Near A=2/5
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(2) The wavelength in the left figure are 0.62 ~ 0.72 . These are included in the 313 ~325 th period.
r = 49 ~58 are positive for 10 consecutive terms. The intenal length is 2.5 times one of [12.4.1 (2)

(3) The wavelength in the right figure are 0.37 ~ 0.43 . These are included in the 271 ~284 th period.

r = 29 ~ 35 are positive for 7 consecutive terms. The interval length is about twice one of [12.4.1 (3) |.

(4) In (1)~ (3) , it is observed that the number of positive continuous terms increases as Y increases.

The reason lies in the definition of wawelength. that is,
l(n y) — e(2n—2)7r/y( e 24y _ 1)
When the near of A =2 is 2, the contour plots of A(n,y ) =1.8 and A(n,y)=2.2 are drawn

as follows. The vertical axis is Y and the horizontal axis is the period number N
v

sS00 e -5

400 | —

300 - .

200 F -

100 A . .
100 200 300 400

n

The allowable range for the wavelength 4 near Y =110 is the lower left black horizontal line, and the one
forthe A near Y =503 is the upper right black horizontal line. Since the contourat A =2.2 has a
smaller slope than the contour at 4 =1.8, the upper right horizontal line is considerably longer than the
lower left horizontal line. That is, the range of N near Y =503 is wider than the one near Y =110 . This
means that the number of positive terms near Y =503 is greater than the number of ones near Yy =110 .
As a result, the mountain near Y =503.5 tends to be higher than the one near Y =110 . This also applies
to A=2/3,1=2/5.

(5) As Y increases, the period number N that gives the wavelength 4 =2 also increases. Then, the
influence of A=2/7,2/9, - alsoincreases. Infact, the nearof A=2/7 is r = 21~ 25 and
these are 5 consecutive positive terms. Furthermore, I = 5~ 11 are 7 consecutive positive terms,
and these wavelengths are close to 2/15 ~ 2/29.

(6) As a result of the above, the mountainin U(Y ) near y=503.5 is higher than the one near Yy=110.

(7) Although mountains have been used as examples so far, the same applies to valleys. So, the amplitudes

of U(y) at y =501~505 are generally larger than those at Y =108~112.

Note

(7) is similar to Bergmann's Law ( Bears in high latitudes are generally larger than bears in low latitudes.).
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12.5 Ampilitude of u(x, y)
The Dirichlet-Eta type cosine function and the series dealt with in Section 3 were as follows.

D
r_

C(F,X,y) = cos(y Iog r) (L | is floor function ) (3.1)

ux,y) = Z LG ) ——=—cos(ylogr) (3.2)

In this section, we study the amplitudes (mountains, valleys, zeros) on the critical line (X:1/2) of (3.2)
using (3.1).
As a numerical example, drawing the real part of 7( 1/2,y ) near Y =110 together with U( 1/2,y ) is

L8]
T

(=]
T

=y
T

109 110 T11 Nz

Both are almost the same, but 77( 1/2,y) with high precision is used in the following calculations.

12.5.1 Mountain of u(1/2,y) ( neary=110)

Accurate calculation of the mountain near Y =110 using 7( 1/2,y ) is as follows.
FindMaximum[Re[nn[1/ 2, y]], {¥, 118}]
{3.32207, {y - 109.921}} Vym i=109.921
Drawing C( r,1/2, yM) by (3.1) is as follows. The horizontal axis is I' . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 3.332 of (3.2)

A big difference from 12.4.1 is that the amplitude decreases as r increases.

=
0.5 |
0.0 . L e = Tl il L= T
10 ] 20 — _ 30 A0 =)= 50
—0.5 |
B |

The order of positive and negative terms is exactly the same as in |12.4.1|. That is,
(1) r = 28 ~ 43 are positive for 16 consecutive terms. These are included in the 59 ~66 th period.

The wavelengths of the periods are 1.62 ~ 2.42, and the central value is 2/1 .
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(2) r = 10 ~ 13 are positive for 4 consecutive terms. These are included in the 41 ~45 th period.

The wavelengths of the periods are 0.58 ~ 0.73, and the central value is 2/3 (=0.67) .
(3) r =5 ~ 8 are positive for 4 consecutive terms. These are included in the 30 ~37 th period.

The wavelengths of the periods are 0.31 ~ 0.46, and the central value is 2/5 (=0.4) .
After ' = 51, the positive and negative gradually balance out, so these three continuous intervals almost
determine the height of the mountain near Y =110. The difference from the previous section is that the
amplitudes near A=2/5 , A=2/3 are larger than those near A=2/1 . In addition, the reason why the same

signs continue near wavelengths A=2/(2k-1) k=1,2,3, - is the same as in the previous section.

12.5.2 Valley of u(1/2,y) ( neary=109)
Accurate calculation of the valley near Y =109 using 77( 1/2 ,y) is as follows.
FindMinimum[Re[n[1/ 2, ¥]1, {y, 169}]
{{-2.15703, {y -~ 108.871} ¥, := 188.870
Drawing C( r,1/72, yV) by |(3.1)]is as follows. The horizontal axis is I' . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms valley —2.157 of [(3.2)]

[

The amplitude decreases with increasing r, the order of the positive and negative terms is exactly the same as

in|12.4.2], and the amplitude near A=2/5 , 1=2/3 is greater than one near A=2/1 . These are the same

as in mountain.

Re: Zeros of u(1/2,y) ( neary=109.5)
Accurate calculation of the zero near Y =109.5 using 77( 172 ,y) is as follows.
FindRoot [Re[n[1 /2, ¥v]], {V, 189.5}]
{y - 189.319} ¥z 1= 109.319

And drawing C( r,yz) by is as follows.
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The same sign continues near wavelengths A = 2/1 , 2/3 . However, the positive and negative values are

canceled as a whole, and the total area of magentaat = 1 ~ 97 is —0.024 . So, the sum of the areas

after r =97 becomes 0.024 .

12.5.3 Amplitude of u(1/2,y) and Variable y
fu(1/2,y) (=Re{n(1/2,y)}) at y=108~112 andat y =501~505 are drawn side by

side, it is as follows. The left is the former and the right is the latter.
Re(n(1/2.y) Re(n(1/2.y)
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Comparing the two figures reveals the following.
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(1) The amplitudes at Y =501~505 are generally larger than those at Y =108~112.
(2) The cycles at Yy =501~505 are generally shorter than those at Yy =108~112.
For (1) of these, we try to prowe it graphically below.
Accurate calculation of the mountain near Y=503.5 using 7(1/2,y ) is as follows.
FindMaximum[Re [n[1 /2, v]], {¥, 563.5}]
{7.69442, {y - 583.406}} ¥m 1= 583.406
Drawing C( r,1/2, yM) by is as follows. The horizontal axis is I' . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 7.694 of (3.2)

-
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(1) The wavelength in this figure are 1.83 ~ 2.20 . These are included in the 400 ~415 th period.
r = 146 ~ 176 are positive for 31 consecutive terms. The intenal length is about twice one of [12.5.1 (1)

An enlarged views of the wavelength around 2/3 and 2/5 are as follows.

c Near A=2/3 c Near A =2/5
015} 02

ool

0.05 B——

-0.05F

-01F

-010F

_I:|15: D2k
(2) The wawelength in the left figure are 0.61 ~ 0.72 . These are included in the 312 ~325 th period.
r = 49 ~ 58 are positive for 10 consecutive terms. The interval length is 2.5 times one of[12.5.1 (2)

Moreover, the amplitude is larger than near A=2/1 .

(3) The wavelength in the right figure are 0.37 ~ 0.43 . These are included in the 271 ~284 th period.
r = 29 ~ 35 are positive for 7 consecutive terms. The interval length is about twice one of [12.5.1 (3) |.

Moreover, the amplitude is larger than near A=2/3.

(4) In (1)~ (3) , it is observed that the number of positive continuous terms increases as Y increases.
The reason for this is described in the previous section (4) .

(5) As Y increases, the period number N that gives the wavelength 4 =2 also increases. Then, the
influence of A=2/7 ,2/9, - alsoincreases. Infact, the nearof A=2/7 is r = 21~ 25 and
these are 5 consecutive positive terms. Furthermore, ' = 5 ~ 11 are 7 consecutive positive terms,
and these wawvelengths are close to 2/15 ~ 2/29 . Moreover, A interval with a shorter wavelength has
a larger amplitude.

(6) As a result of the above, the mountain in U( 1/2,Y ) near y=503.5 is higher than the one near

y=110.

(7) Although mountains have been used as examples so far, the same applies to valleys. So, the amplitudes

of U(1/2,y) at y =501~505 are generally larger than those at y =108~112.

Note1

(7) is similar to Bergmann's Law ( Bears in high latitudes are generally larger than bears in low latitudes.).

Note2
In th case of X >1/2, the influence of 1/r% is too great and (1) ~ (7) do not seem to hold.

2023.03.23
Kano Kono

Hiroshima, Japan
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