
13 Dirichlet Eta type Sine Series

13.1 sin(y log r)

  Let r,y  are positive numbers respectively, and consider the following function s r ,y .

s( )r, y  = sin ( )y log r (1.1)

When y = 3.02157 ,  9.06472 , 14.1347 ,  these 2D figures for r =164  are drawn as follows.
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Observation of these reveals the following.

(1) s r ,y  is a variable periodic function with respect to r .

(2) The number of periods within the same interval is approximately proportional to y .
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  Below, we consider this function in more detail.

Amplitude  A

  The amplitude of this function is A =1 .

Period  P

  This function is a periodic function. The first period starts at 0  and ends at 2 ,  the second period starts

at 2  and ends at 4 ,  so

y log r0 = 0  , y log r1 = 2  , y log r2 = 4  ,   , y log rn = 2n  ,  
From these,

r0 = e0/y , r1 = e2/y , r2 = e4/y   ,     ,  rn = e2n/y   , 
Therefore, the function c is separated into the following unit intervals.

e 0/y ,  e 2/y    ,  e 2/y ,  e 4/y   ,     ,  e( )2n-2 /y ,  e 2n/y    , 

Each of these has one mountain and one valley. We will call these the 1 st period, the 2 nd period,  .   i.e.

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

  For example,  if y =3.02157 , the 1 st period e 0/y , e 2/y
and the 2 nd period e 2/y , e 4/y

 are

P 1 ,3.02157  = 1 ,  8  , P 2 ,3.02157  = 8 ,  64
If  these two periods are drawn in succession,  it is as follows. The left is normal scale and the right is semi-

logarithmic scale. Since these are sinine functions, one cycle is from peak to peak, and there are two peaks

in these figures except for the end point.

 

Wavelength  
  The wavelength are the length of these periods.  That is,

e 0/y e 2/y -1   ,  e 2/y e 2/y -1   ,     ,  e( )2n-2 /y e 2/y -1   , 

The wavelength is e 2/y
 times longer than the previous period in each period.  So, this function is a variable

periodic function.  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1

In the figure above,  the wavelengths of the 1 st and the 2 nd periods of c r ,y  are

 1 ,3.02157  = 7 ,  2 ,3.02157  = 56

However, c r ,y  drawn on a semi-logarithmic scale looks like a fixed period at first glance.
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  When n =1 ,  y  can be back calculated from  .

y = 
log +1

2

From this,

When ( )1, y =7 , y = 
log8
2

 = 3.02157

When ( )1, y =1 , y = 
log2
2

 = 9.06472

When ( )1, y =0.559743 , y = 
log 1.559743

2
 = 14.1347

  A 3D view of  n ,y at n  1 is shown on the left. And the contour plots at =0.5 , =1.0 , =2.0
are shown on the right.

 

From these figures, we can see that the slope of the n ,y contour decreases as n increases. The reason

why is,

n

 ( )n ,y  = 
y

2 
e( )2n-2 /y e 2/y -1  > 0 for  n ,y > 0

Using this contour plot, we can find the n ,y  pair that gives the desired  .

Mountain  Ms

  Since s r,y is a sine function, the mountain is at 1/4  of the period  plotted on a semilogarithmic scale.

Ms( )n ,y  = e 2y

 4n-3 

In the figure above,  the mountains of the 1 st and the 2 nd periods of s r ,y  are

Ms 1 ,3.02157  = 1.68179   , s 2 ,3.02157  = 13.4544

Valley  Vs

  Since s r,y is a sine function, the vallay is at 3/4  of the period  plotted on a semilogarithmic scale.

Vs( )n ,y  = e 2y

 4n-1 
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In the figure above,  the valleys of the 1 st and the 2 nd periods of s r ,y  are

Vs 1 ,3.02157 = 4.756843   , Vs 2 ,3.02157 = 38.0548

Zeros  Zs

  Since s r,y is the sine function, the zeros are at the left edge and middle of the period  plotted on a semi-

logarithmic scale.

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above,  the zeros of the 1 st and the 2 nd periods of c r ,y  are

Zs 1 ,3.02157  =  1 , 2.82843    ,   Zs 2 ,3.02157  =  8 , 22.6275

Near zeros  Xs

  When the variable r  of s r,y  is a discrete variable,  we will call  the integer r  within 0.5  from the

zero point  the neighborhood of the zero point.  That is,

Xs( )n ,y  =  Round e y

 2n-2 

 , Round e y

 2n-1 

In the figure above,

Xs 1 ,3.02157 =  1 ,3     ,    Xs 2 ,3.02157 =  8 , 23

Riemann Zeta type sine Series ( when y = 14.1347  )

  Until now, we have treated r  as a continuous variable in the function s r,y ,  but in this section,

we consider the following Riemann Zeta type sine function with respect to y .

v( )y  = Σ
r=1



sin ( )y log r (1.2)

Then,  r  has to be a discrete variable.

  For example,  when y1=14.1347 , r =1,2, ,34  and r =35,36, ,132  are drawn in

succession,  it is as follows.

 

The function value of  (1.2)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from

the integral value of (1.1). On the other hand, in the right figure this sum is close to the integral value of  (1.1) .

Divergence

  In the right figure, the area seems to be zero due to cancellation of plus and minus, but it is not.  Because,
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the interval between waves expands and eventually becomes infinite.  So,  the series in  (1.2)  diverges.

In fact,

v( )y   
1


sin ( )y log r dr

But, the right hand side becoms


1


sin ( )y log r dr =  1+y2

r -y cos( )y log r + sin ( )y log r

1



     = 

Note
  (1.2)  becoms only an asymptotic expansion even if it is accelerated.
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13.2   sin(y log r)

  Let r,y  are positive numbers respectively, and consider the following function s r ,y .

s( )r, y  = ( )-1  r-1 sin ( )y log r (  is floor function ) (2.1)

When y = 3.02157 ,  9.06472 , 14.1347 ,  these 2D figures for r =164  are drawn as follows.
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Unlike the previous section, s r ,y  is a discontinuous function with respect to r . However, it is the same 

as the previous section that s r ,y  is a variable periodic function and that the number of cycles in the same

interval is approximately proportional to y .

Amplitude  A
  The amplitude of this function is

A( )r  =  ( )-1  r-1  = 1
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Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

  For example,  if y =3.02157 ,  the 1 st period e 0/y , e 2/y
 is

P 1 ,3.02157  = 1 ,  8

This is drawn as follows. The left is normal scale and the right is semi-logarithmic scale.

 

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7

Mountain or Valley  MVs

  Unlike the previous section,  this function s r ,y  changes sign.  For this reason, mountains and valleys

exist at most twice as many as in the previous section.

MVs( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

The mountain or valley is determined by the sign of s r ,y  at r = MVs n ,y .

In the figure above, 

MVs 1 ,3.02157  =  1.68179, 4.75684

{s 1.68179 ,3.02157  , s 4.75684 ,3.02157 } =  1 ,1
So, both the former and the latter are mountains.

Zeros  Zs
  The zeros of this function are the same as in the previous section,  That is,

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above, 

Zs 1 ,3.02157  =  1 , 2.82843
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Constriction  Xs

  Since this function s r ,y  changes sign,  the zero point looks like a constriction.  So, we will call  the 

integer r within 0.5  from the zero point  constriction.  That is,

Xs( )n ,y  =  Round e 2y

 2n-2 

 , Round e 2y

 2n-1 

In the figure above,

Xs 1 ,3.02157  =  1 ,3

Dirichlet Eta type sine Series ( when y = 14.1347  )

  We consider the following Dirichlet Eta type sine function with respect to y .

v( )y  = Σ
r=1


( )-1 r-1sin ( )y log r (2.2)

Then,  r  has to be a discrete variable.

  For example,  when y1=14.1347 , r =1,2, ,34  and r =35,36, ,105  are drawn in 

succession,  it is as follows.

 

The function value of  (2.2)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from

the integral value of (2.1). On the other hand, in the right figure this sum is close to the integral value of  (2.1) .

Convergence ?

  The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions

seems to cancel out to zero.  As a trial, when y1=14.1347 ,  the area between each constriction in the

11 th and the 25 th periods are calculated as follows.

The 11 th period Xs 11 , y1  =  85 ,106    ,    11 , y1  = 47.7

v11 y1  = Σ
r=85

105

( )-1 r-1sin y1log r  = 0.00208785

The 25 th period Xs 25 , y1  =  42981 ,53679    ,    25 , y1  = 24058.2

v25 y1  = Σ
r=42981

53678

( )-1 r-1sin y1log r  =  -0.0000684506

Certainly,  the area between two constrictions approaches 0  as r  increases.

  To find out the cause of this,  let us compare the enlarged images near r =85  and r =42981 .
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Then, at a glance, it can be seen that the scale of the vertical axis is an order of magnitude. Why? The reason

is simple. Because, the wavelength becomes longer as r  moves away from the origin. Since the amplitude is

1 , the longer the wavelength, the slower the slope of the variable-length sine curve.  In fact, if we differentiate

the unsigned part of  (2.1)  with respect to r ,

r


s( )r, y  = 

r
y

cos( )y log r

Let r  then s r ,y /r  0 .

Thus, the area between two adjacent constrictions approaches 0  as r  increases.

Maximum Error

  However, even so, this series v y is a divergent series. i.e. it just oscillates and never converges. Therefore,

if this series is truncated at mountain or valley, there will be a maximum error of 0.5 . In fact, in the example

above,  truncating r  at the 30 th period valley of 553771  yielded an error of -0.5  as follows. In addition

the correct value is the Dirichlet Eta function value -Im  0+ i 14.1347  = -0.0657473 .

Minimum Error

  On the other hand, a better approximation is obtained if the series is truncated at an appropriate constriction.

In fact, in the example above,  when r was truncated at the 30 th period constriction 495526 , it was in

consistent with the Dirichlet Eta function value -Im  0+ i 14.1347  = -0.0657473 .
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Summation Method and Convergence Acceleration

  After all,  this series  (2.2)  oscillates within an error of 0.5 .  A summation method insists that an error of

0.5  should be regarded as 0  on average. One of the simplest summation methods is Euler Transformation.

The Euler transformation accelerates the convergence of the series and also applies the summation method.

Applying the Euler transformation to  (2.2) , 

v( )y,m  = Σ
k=1

m

Σ
r=1

k

2k+1

1  
k

r
( )-1 r-1 sin ( )y log r (2.2 ' )

And the 2D figure is

The value of  (2.2 ' )  at y1=14.1347  in this figure is as follows.  It is in consistent with the Dirichlet Eta

function value -Im  0+ i 14.1347 .
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13.3   sin(y log r) / r^x

  Let r,x,y  are positive numbers respectively, and consider the following function s r ,x ,y .

s( )r, x, y  = 
rx

( )-1  r-1

sin ( )y log r (  is floor function )     (3.1)

When x = 1/2 , y = 3.02157 ,  9.06472 , 14.1347 ,  these 2D figures for r =164  are drawn

as follows.
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Amplitude  A
  The amplitude of this function is

A( )r,x  =  rx

( )-1  r-1

 = 
rx

1
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When x > 0    lim
r

1/r x = 0 .  Therefore, this function represents a damped oscillation.

  For example, when x =1/2 , y =3.02157 ,  the 1st period e 0/y ,  e 2/y
 of s r ,x ,y  is drawn

as follows. The left is normal scale and the right is semi-logarithmic scale.

 

Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above, 

P 1 ,3.02157  = 1 ,  8

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7

Mountain or Valley  MVs
  The mountains or valleys of this function are the same as in the previous section,  That is,

MVs( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

In the figure above, 

MVs 1 ,3.02157  =  1.68179, 4.75684

 s 1.68179 ,1/2 , 3.02157  , s 4.75684 ,1/2 , 3.02157

=  0.771106 ,0.458501
So, both the former and the latter are mountains.

Zeros  Zs
  The zeros of this function are the same as in the previous section,  That is,

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above, 

Zs 1 ,3.02157  =  1 , 2.82843
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Constriction  Xs
  The constrictions of this function are the same as in the previous section,  That is,

Xs( )n ,y  =  Round e 2y

 2n-2 

 , Round e 2y

 2n-1 

In the figure above, 

Xs 1 ,3.02157 =  1 ,3

Dirichlet Eta type sine Series ( when x = 1/2 , y = 14.1347  )

  We consider the following Dirichlet Eta type sinine function with respect to x ,y .

v( )x,y  = Σ
r=1



rx

( )-1 r-1

sin ( )y log r (3.2)

Then,  r  has to be a discrete variable.

  For example,  when x =1/2 , y=14.1347 , r =1,2, ,34  and r =35, ,105  are drawn in

succession,  it is as follows.

 

The function value of  (3.2)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from

the integral value of (3.1). On the other hand, in the right figure this sum is close to the integral value of  (3.1) .

Convergence

  The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions

seems to cancel out to zero.  As a trial, when x =1/2, y =14.1347 , the area between each constriction

in the 11 th and the 25 th periods are calculated as follows.

The 11 th period Xs 11 , y1  = {85 ,106}   ,    11 , y1  = 47.7

v11 2
1

 , y1  = Σ
r=85

105

r1/2

( )-1 r-1

sin y1log r  = -0.000473572

The 25 th period Xs 25 , y1  =  42981 ,53679    ,    25 , y1  = 24058.2

v25 2
1

 , y1  = Σ
r=42981

53678

r1/2

( )-1 r-1

sin y1log r  =  -0.00000032251

Comparing the two, the area between the two constrictions rapidly converges to 0  as r  increases. The reason

for this is clear.  Even when the amplitude is 1 ,  the area between constrictions decreases as r increases.

Moreover, the amplitude approaches 0 . The synergistic effect forces the area between constrictions to approach
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0  even more rapidly.  In this case, Σ1/r x
 does not have to converge.  It only needs to be lim

r
1/r x = 0 .

Thus, (3.2)  converges if x >0 .

Minimum Error

  Therefore, in calculating the series v x ,y , a better approximation must be obtained by truncating r  at an 

appropriate constriction.

  In fact, when x =1/2 , y1=14.1347 ,  if r was truncated at the 25 th period constriction 42981  and

compared with the Dirichlet Eta function value -Im  1/2+ i 14.1347  = 0 , both coincided up to

6  decimal places.

Maximum Error

  This series v x ,y  converges. However, if this series is truncated at mountains or valley, an error of at most

1/r x 1/2  will occur. In fact, in the example above, when r was truncated at the valley 59988  of the

25 th period,  both coincided up to 2 decimal places. This error is 3,800  times larger than the minimum error

above.
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13.4 Amplitude of v(y)

 The Dirichlet-Eta type sine function and the series dealt with in Section 2 were as follows.

s( )r, y  = ( )-1  r-1 sin ( )y log r (  is floor function ) (2.1)

v( )y  = Σ
r=1


( )-1 r-1sin ( )y log r (2.2)

In this section, we study the amplitudes (mountains, valleys, zeros) of (2.2)  using  (2.1) .

  As a numerical example, drawing the imaginary part of  0,y  near y =110  together with v y  is 

Both are almost the same, but  0,y  with high precision is used in the following calculations.

13.4.1 Mountain of v(y)  ( near y= 110.5 )

  Accurate calculation of the mountain near y =110.5  using  0,y  is as follows.

Drawing s r ,yM  by (2.1) is as follows. The horizontal axis is r .  Cyan is drawn as a continuous variable

and magenta as a discrete variable. The sum of the area of magenta becoms mountain 8.812  of  (2.2) .

 

In this figure, three intervals are observed in which magenta is continuously positive.  That is,

(1) r = 28  43  are positive for 16  consecutive terms. These are included in the 59 67 th period.

     The wavelengths of the periods are 1.59  2.51 ,  and  the central value is 2/1 .

(2) r = 11  13  are positive for 3  consecutive terms. These are included in the 43 45 th period.

     The wavelengths of the periods are 0.64  0.72 ,  and  the central value is 2/3 ( )=0.67 .
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(3) r = 7 8  are positive for 2  consecutive terms. These are included in the 35 37 th period.

     The wavelengths of the periods are 0.41  0.46 ,  and  these are close to 2/5 ( )=0.4 .

After r = 52 ,  the positive and negative gradually balance out,  so these three continuous intervals almost

determine the height of the mountain near y =110.5 . In addition, the same sign continues in the vicinity of

the wavelength =2/ 2k -1  k =1,2,3, .  I will explain this reason by the enlarged view of  (2)  ( the

central value is 2/3 )  which is the easiest to understand.

When r =11 ,  s 11 ,110.337  = ( )-1  10 sin 110.337 log 11 = +0.630

When r =11+2/3 , s 11.67 ,110.337  = ( )-1  10.67 sin 110.337 log 11.67 = +0.778

When r =11+3/3 , s 12 ,110.337  = ( )-1  11 sin 110.337 log 12 = - -0.756

i.e. because the end of the half wavelength is close to the end of the interval of length 1 . This also applies to

 =2/5 ,2/7 , .

13.4.2 Valley of v(y)  ( near y= 109.5 )

  Accurate calculation of the valley near y =109.5  using  0,y  is as follows.

Drawing s r ,yV  by  (2.1)  is as follows. The horizontal axis is r .  Cyan is drawn as a continuous variable

and magenta as a discrete variable. The sum of the area of magenta becoms valley -12.917  in  (2.2) .

 

In this figure, three intervals are observed in which magenta is continuously negative.  That is,

(1) r = 29  42  are negative for 14  consecutive terms. These are included in the 59 66 th period.

     The wavelengths of the periods are 1.65  2.47 ,  and  the central value is 2/1 .
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(2) r = 10  13  are negative for 4  consecutive terms. These are included in the 41 45 th period.

     The wavelengths of the periods are 0.59  0.74 ,  and  the central value is 2/3 ( )=0.67 .

(3) r = 6  8  are negative for 3  consecutive terms. These are included in the 33 36 th period.

     The wavelengths of the periods are 0.37  0.44 ,  and  the central value is 2/5 ( )=0.4 .

After r = 51 ,  the positive and negative gradually balance out,  so these three continuous intervals almost

determine the depth of the valley near y =109.5 .

Re:  Zeros of  v(y)  ( near y= 110 )

  Accurate calculation of the zero near y =109.5  using  0,y  is as follows.

And drawing s r ,yZ  by  (2.1)  is as follows. 

 

The same sign continues near wavelengths  = 2/1 , 2/3 . However, the positive and negative values are

canceled as a whole, and the total area of magenta at r = 1  140  is 0.01 . So, the sum of the areas

after r = 140  becomes -0.01 .

13.4.3 Amplitude of v(y) and Variable y

  If v y    = -Im  0 ,y  at y = 108112  and at y = 501505  are drawn side by side,

 it is as follows. The left is the former and the right is the latter.

 

Comparing the two figures reveals the following.

(1) The amplitudes at y = 501505  are generally larger than those at y = 108112 .

(2) The cycles at y = 501505  are generally shorter than those at y = 108112 .
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  Both of these are difficult to prove analytically. However, a graphical proof of  (1)  is possible using s r ,y

It is shown below.

  Accurate calculation of the mountain near y =504  using  0,y  is as follows.

Drawing s r ,yM  by  (2.1)  is as follows. The horizontal axis is r .  Cyan is drawn as a continuous variable

and magenta as a discrete variable. The sum of the area of magenta becoms mountain 34.432  in  (2.2) .

 

  An enlarged view of the wavelength around 2/1  is as follows.

(1) The wavelength in this figure are 1.82  2.22 .  These are included in the 400 416 th period.

   r = 145  177 are positive for 33 consecutive terms. The interval length is about twice one of  13.4.1 (1) .

  An enlarged views of the wavelength around 2/3  and 2/5  are as follows.
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(2) The wavelength in the left figure are 0.61  0.72 .  These are included in the 313 326 th period.

   r = 49  58  are positive for 10 consecutive terms. The interval length is about 3 times one of  13.4.1 (2) .

(3) The wavelength in the right figure are 0.37  0.43 .  These are included in the 273 285 th period.

   r = 30  35  are positive for 6 consecutive terms. The interval length is 3  times one of  13.4.1 (3)  .

(4) In (1) (3) , it is observed that the number of positive continuous terms increases as y  increases.

    The reason lies in the definition of wavelength. that is,

( )n ,y  = e( )2n-2 /y e 2/y -1

    When the near of  =2  is 2 , the contour plots of  n ,y =1.8  and  n ,y =2.2  are  drawn

    as follows. The vertical axis is y  and the horizontal axis is the period number n 

    The allowable range for the wavelength   near y =110  is the lower left black horizontal line, and the one

    for the   near y =504  is the upper right black horizontal line.  Since the contour at  =2.2  has a

    smaller slope than the contour at  =1.8 , the upper right horizontal line is considerably longer than the

    lower left horizontal line. That is, the range of n  near y =504  is wider than the one near y =110 . This

    means that the number of positive terms near y =504  is greater than the number of ones near y =110 .

    As a result, the mountain near y =504  tends to be higher than the one near y =110 . This also applies

    to  =2/3 ,  =2/5 .

(5) As y  increases,  the period number n  that gives the wavelength  =2  also increases. Then, the 

    influence of  = 2/7 , 2/9 ,   also increases.  In fact, the near of  =2/7  is r = 21  25  and

    these are 5  consecutive positive terms.  Furthermore, r = 5  11  are 7  consecutive positive terms,

    and these wavelengths are close to 2/15  2/29 .

(6) As a result of the above,  the mountain in v y near y =504  is higher than the one near y =110.5

(7) Although mountains have been used as examples so far, the same applies to valleys. So, the amplitudes

    of v y  at y = 501505  are generally larger than those at y = 108112 .

Note

  (7)  is similar to Bergmann's Law ( Bears in high latitudes are generally larger than bears in low latitudes.).
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13.5 Amplitude of v(x,y)

 The Dirichlet-Eta type sine function and the series dealt with in Section 3 were as follows.

s( )r, x, y  = 
rx

( )-1  r-1

sin ( )y log r (  is floor function ) (3.1)

v( )x,y  = Σ
r=1



rx

( )-1 r-1

sin ( )y log r (3.2)

In this section, we study the amplitudes (mountains, valleys, zeros) on the critical line x =1/2  of  (3.2) 

using  (3.1) .

  As a numerical example, drawing the imaginary part of  1/2 ,y  near y =110  together with 

v 1/2 ,y  is as follows.

Both are almost the same, but  1/2 ,y  with high precision is used in the following calculations.

13.5.1 Mountain of v(1/2,y)  ( near y= 110.5 )

  Accurate calculation of the mountain near y =110.5  using  1/2 ,y  is as follows.

Drawing s r ,1/2 , yM  by (3.1) is as follows. The horizontal axis is r . Cyan is drawn as a continuous 

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 1.614  of (3.2)

A big difference from  13.4.1  is that the amplitude decreases as r  increases.

 

The order of positive and negative terms is almost the same as in  13.4.1 .  That is,

(1) r = 28  43  are positive for 16  consecutive terms. These are included in the 59 67 th period.

     The wavelengths of the periods are 1.59  2.50 ,  and  the central value is 2/1 .
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(2) r = 11  13  are positive for 3  consecutive terms. These are included in the 43 45 th period.

     The wavelengths of the periods are 0.64  0.72 ,  and  the central value is 2/3 ( )=0.67 .

(3) r = 7 8  are positive for 2  consecutive terms. These are included in the 35 37 th period.

     The wavelengths of the periods are 0.41  0.45 ,  and  these are close to 2/5 ( )=0.4 .

After r = 51 ,  the positive and negative gradually balance out,  so these three continuous intervals almost

determine the height of the mountain near y =110.5 .  The difference from the previous section is  that the

amplitudes near =2/5 ,=2/3 are larger than those near =2/1 . In addition, the reason why the same

signs continue near wavelengths =2/ 2k -1   k =1,2,3,  is the same as in the previous section.

13.5.2 Valley of v(1/2,y)  ( near y= 109.5 )

  Accurate calculation of the valley near y =109.5  using  1/2 , y  is as follows.

Drawing s r ,1/2 , yV  by  (3.1)  is as follows. The horizontal axis is r .  Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms valley -3.072  of  (3.2) .

 

The amplitude decreases with increasing r , the order of the positive and negative terms is almost the same as

in 13.4.2 , and the amplitude near =2/5 ,=2/3 is greater than one near =2/1 . These are the same

as in mountain.

Re:  Zeros of  v(1/2 ,y)  ( near y= 110 )

  Accurate calculation of the zero near y =110  using  1/2 , y  is as follows.

And drawing s r ,1/2 , yZ  by  (3.1)  is as follows. 
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The same sign continues near wavelengths  = 2/1 , 2/3 . However, the positive and negative values are

canceled as a whole, and the total area of magenta at r = 1  140  is 0.02 . So, the sum of the areas

after r = 140  becomes -0.02 .

13.5.3 Amplitude of v(1/2 ,y) and Variable y

  If v 1/2 ,y    = -Im  1/2 ,y  at y = 108112  and at y = 501505  are drawn side by

 side, it is as follows. The left is the former and the right is the latter.

 

Comparing the two figures reveals the following.

(1) The amplitudes at y = 501505  are generally larger than those at y = 108112 .

(2) The cycles at y = 501505  are generally shorter than those at y = 108112 .

  For (1) of these, we try to prove it graphically below.

  Accurate calculation of the mountain near y =504  using  1/2 ,y  is as follows.

Drawing s r ,1/2 , yM  by  (3.1)  is as follows. The horizontal axis is r . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 5.31  of  (3.2)

 

  An enlarged view of the wavelength around 2/1  is as follows.
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(1) The wavelength in this figure are 1.80  2.22 .  These are included in the 399 416 th period.

r = 144  178 are positive for 35 consecutive terms. The interval length is about twice one of  13.5.1 (1) .

 An enlarged views of the wavelength around 2/3  and 2/5  are as follows.

(2) The wavelength in the left figure are 0.61  0.72 .  These are included in the 312 326 th period.

r = 49  58  are positive for 10 consecutive terms. The interval length is 3.3  times one of 13.5.1 (2)

Moreover, the amplitude is larger than near =2/1 .

(3) The wavelength in the right figure are 0.37  0.43 .  These are included in the 271 285 th period.

r = 29  35  are positive for 7 consecutive terms. The interval length is 2.5  times one of  13.5.1 (3)  .

Moreover, the amplitude is larger than near =2/3 .

(4) In (1) (3) , it is observed that the number of positive continuous terms increases as y  increases.

The reason for this is described in  the previous section  (4) .

(5) As y  increases,  the period number n  that gives the wavelength  =2  also increases. Then, the

influence of  = 2/7 , 2/9 ,   also increases.  In fact, the near of  =2/7  is r = 21  25  and

these are 5  consecutive positive terms.  Furthermore, r = 5  11  are 7  consecutive positive terms,

and these wavelengths are close to 2/15  2/29 .  Moreover, A interval with a shorter wavelength has

a larger amplitude.

(6) As a result of the above, the mountain in u 1/2 , y near y =504 is higher than the one near y =110.5
(7) Although mountains have been used as examples so far, the same applies to valleys. So, the amplitudes

of v 1/2, y  at y = 501505  are generally larger than those at y = 108112 .

Note1

(7) is similar to Bergmann's Law ( Bears in high latitudes are generally larger than bears in low latitudes.).

Note2

In th case of x >1/2 , the influence of 1/r x
 is too great  and  (1)   (7)  do not seem to hold.
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