7 Expression of Polynomial with Real Coefficients by Real & Imaginary parts.
Each of polynomial with real coefficients can be easily expressed by real and imaginary parts. However, we
have never seen the formula that expresses any polynomial with real coefficients by real and imaginary parts.

This chapter presents such a formula.

17.1 Lemma and Formulas

First, we prepare an important lemma. This is a reprint from "|14 Taylor Expansion by Real Part & Imaginary|
Part "

Lemma 14.1.0 (Reprint)

When X,Y are real numbers and I is a non-negative integer, the following expressions hold.
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Where, OO =1 , FXW is the ceiling function , LXJ is the floor function.
Using this Lemma, w can separate any polynomial with real coefficients by real and imaginary parts.

Formula 17.1.1

Let @ be a real number and fn (Z) (Z =X+ y) be a polynomial with real coefficients as follows.

(r)(a)

h@ = 3" @) (1)

Then, the following expressions hold for the real and imaginary parts un( X,y ) ,Vn( X,y )
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Where, OOZ 1 , rX—| is the ceiling function , LXJ is the floor function.

Proof
Replacing X with X—a in Lemma 14.1.0,
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Substituting this for (1.1),
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Describing the real and imaginary parts as un(x Y ) , Vn(x VY ) respectively, we obtain the desired expressions.

Example of Expansion
u5( X ,y) is expanded as follows.
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As seen from this example, This polynomial is somewhat halfway with respect to both X and Y .

So, we rearrange this into a more beautiful polynomial.

Formula 17.1.2

Let & be areal numberand f,(z) (Z=x+iy) be a polynomial with real coefficients as follows.

L@ = Zf@( >(Z a)s

Then, the following expressions hold for the real and imaginary parts un( XY ) ,Vn( X, y)
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Where, OO: 1 , FXW is the ceiling function , LXJ is the floor function.



Proof

From Formua 17.11]
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Here, let
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When N=5, (1.1u') is rearranged as follows.
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When N=4,|(1.1u")| is rearranged as follows.
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These can be unified notation as follows.
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returning to the original symbol ,
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Substituting this for the above,
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In the same way as above for|(1.1v") [, we obtain
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| = (2r+s+1)
2 J | n-2r-1 (a) (2r+s+1)1 s}
= _ Y 2r+1
VnlX.¥) 23{ sgo (2r+s+1)1 (2r+1)!s!(X a)’ [ Dy
ie.
LHT_lJn—Zr—l rs+1) (X_a)s (_l)ry2r+l
(xy) = 2% 4 @)= @D (1:29
Maclaurin Expansion by Real and Imaginary Parts
u5(x ,y) ,V5(X ,y) are expanded to the Maclaurin series. as follows.
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A polynomial whose Maclaurin series does not include even-order derivatives is called an odd polynomial.

The following holds for the odd polynomial.

Formula 17.1.2 ' ( Odd Polynomial )
Let f2n+1(Z ) (Z =X+ y) be a polynomial with real coefficients as follows.

n 25+1
fa@ = RO Gyt
Then, the following expressions hold for the real and imaginary parts u2n+1(x ,y) ,v2n+1(x,y)
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Where, OO: 1

A polynomial whose Maclaurin series does not include odd-order derivatives is called an even polynomial.

The following holds for the even polynomial.

Formula 17.1.2 " ( Even Polynomial )
Let fo,(z) (z=X+iy) be a polynomial with real coefficients as follows.

2s
(2s) z
f2n (Z) Z f (O) (23) I
Then, the following expressions hold for the real and imaginary parts u2n(x,y) ,v2n(x,y) .
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Where, OO: 1

Cauchy-Riemann Equations

When| (1.2u) and (1.2v) |are partially differentiated with respect to X , Y respectively, it is as follows.

These are the Cauchy—Riemann equations
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Treatment of 0° in Mathematica

Formula manipulation soft Mathematica does not calculate OO as Indeterminate . Since it is inconvenient,

the following options are specified prior to calculation in this paper .

Unprotect [Power]; Power[0,0]=1;



17.2 Example1: Cyclotomic Equation

Examples are given in this section and the next section. As the first , we takes up Cyclotomic Equation in
this section .

Cyclotomic Equation is as follows.

1-z"1
Co@ =1+z+7°+ - +7"=0 ( = )

1-7 (2.0)
So, the function C,, (Z) is expanded to the Maclaurin series. as
n 7S
C.@ = Zs!—I 2.1)
s=0 S3
When N =5, this is drawn as follows.
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Expression by real and imaginary parts by Formula 17.1.2
From (2.1),
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Where, 00 =1 , rX-| is the ceiling function , |_XJ is the floor function.



When N=5, these are expanded as follows.

us(x,y) = [gwi:r(Zrﬂ)!:_:%
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- 1!3_(: + 2!)1(—1 + 3!2—? + 4!2—? + 5!2_: )i_t
- 3!;—(!) + 4!;_1 + 5!;_j )é_::

:}r+2x}r+3x2}r+4x3y+5x4y—y3—4xy3—lﬂx2y3+y5

When N=5, both sides are drawn as follows. The left is the real part and the right is the imaginary part.

In both figures, orange is the left side and blue is the right side.

[ Re{Cs{x+iy)) []us(x,y) [Im(Csix+iy) [Dvsix, y}

Zeros

The zeros of the function Cn( Z ) are given by the real solution of the following simultaneous equations.



( [nT_l—‘n—Zr S -1 r,,2r

hG) = % L @I ((22)y! 0
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= 58 @ QU <o

When N=5, this can be solved by the formula manipulation software Mathematica as follows.

Solvel[us[x, v] == 0 && vs[x, v] = 0, Element[{x, v}, Reals]]

{{x—a—l, v 0}, {x—r—i, }r—l—%}, {x—:r—i, V> %},
E E
(x>, v, S )

These are five of six solutions of the 6th degree equation 1 - Z 6= 0.

-10-



17.3 Example2: Bernoulli Polynomial
In this section, we take the Bernoulli polynomial as a second example.

Bernoulli polynomial is as follows.

n n
Bn(z)=2( )Bn_szS (3.0)
s=0 \ S
Where,
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— 1 — — — —
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= I— = ] =
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When N=6, both sides are drawn as follows. Orange is the left side and blue is the right side.
Bs{z)
— Bs{2)

-0.5

Expression by real and imaginary parts by Formula 17.1.2

From (3.1),
n!B,_
Bi¥'(0) = (n_—sn)s. s=0,1, -, n
B71*)(0) = o2 r=0,1, -, [(n-1)/2]
n (h-2r-s)! s=0,1, -, n-2r
nlt Bn-2r-s-1 r=0,1, -, F(n—l)/ZT
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Substituting these for| Formula 17.1.2],

= |
[ 2 Inc2r Bn—2r-s X3 (_1)ry2r
u,x,y) =n! 3.2
n(Y) z 2 (-2r-s)! sT  @20! (8.20)
=
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Where, OO: 1 , rX—| is the ceiling function , LXJ is the floor function.
When N=6, these are expanded as follows.
|5 ]
2 16=2r BG—ZF—S Xs (_l)ry2r
X = 6! —
Ue(x,¥) ;0 SEO (6-2r-s)! st (2r)1¥
( Bs x° Bs x* Bsx® Bsx® By x* By x> Bp x° )yo
= 6! + + + +
6! O 5rir 4r2r 313r 2141 1151t Q! el ) O!
( B, x° Bz x* By x? By x® Bpx* ) y?
- 6! + +
41 O 3r1r 2121 1131 Q! 41 /)21
B 0 B 1 B 2 4
N 6!( 2 x_  B1x" Box )y
21 01 1111 QO 21 /41
0 6
61 ( Box’ )y_
0O 0 /o!
[ 1 x?2 x4 x x®
=720 - - - +
30240 1440 288 240 T20
¥ x2y? xIy?  xiy? v xy! x?vy! ¥
- - - - - - - -
1440 48 24 48 288 48 48 720
|5 J6-2e1 Bg_or_s_1 xS Dyt
Ve(x,y) =61 X e
=0 =0 (6-2r-s-1)1 s1 (2r+1)!
( Bs x° Bs x' Bz x? By x®* By x* By x° ) yt
= 6! + + + + +
51 O 41 11 3r 2vr 21 31 11 41 Q! 51/ 11
Bs x° B, x' Bi x* By x® ) y3
- 61 +
3r or 2r1rvr 1r 2vr Qr 31/ 31
B 0 B 1 5
+ 6 1 x, Bo X y
11 Or Or! 11/ 51
[ xy x*y xly Xy xy? xy? x*y v x y’
=720 |- + - - - - - - +
720 T2 48 120 T2 24 36 240 120

When N=6, both sides are drawn as follows. The left is the real part and the right is the imaginary part.

In both figures, orange is the left side and blue is the right side.
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Zeros

The zeros of the function Bn( z ) are given by the real solution of the following simultaneous equations.

’ [ oo
2 In-2r B _or_s x° (_1)ry2r
-
LY =nt 2 5 T TT ST @]
|5 oozra Bn-2r-s-1 X DTy

2
5 20 (-2r-s-1! s! @r+)! =0

=0

N/

D |

‘ vo(X,y) =n!

_‘
1l

When N=6, this can be solved by the formula manipulation software Mathematica as follows.

NSolve[ug[x, ¥v] = 0 && vg[x, ¥] = 0, Element[{x, v}, Reals]]
I{x—>0.752459 , vy 01} , { x=0.247541 , v=- 01},

ITx—-1.27289% , v—» -0.0649729}, {x-»1.27289 , v—» 0.0649729 1,
{x—--0.272887 , y-0.0649729} , { x> -0.2728B87 , vy » -0.0649729 1}
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