
08 Factorization of Completed Riemann Zeta

8.1 Hadamard product of  z

Formula 8.1.1 ( Hadamard product of  z  )

  Let completed zeta function be as follows.

( )z  = -z( )1-z 
-

2
z

 2
z ( )z (1.d)

When non-trivial zeros of  z  are zk = xk  i yk   k =1,2,3,  and   is Euler-Mascheroni constant,

 z  is expressed by the Hadamard product as follows.
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Proof

  Suppose that the Hadamard product is expressed as follows.

( )z  = A eB zΠ
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z
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(1.p)

And let us find A and B of this.  As first,

 2
z

 = 
z
2
 2

z
+1

Substituting this for  (1.d) ,

( )z  = -2( )1-z 
-

2

z

 2
z

+1 ( )z (1.d ' )

Substituting  z =0 for (1.d ' ) ,

( )0  = -2( )1-0 
-

2

0

  2
0

+1 ( )0  = -21 -
2
1

 = 1

Substituting  z =0 for (1.p ) , ( )0  = A .  We obtain A =1  from both.  Thus,
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(1.p ' )

  Next,  from (1.d ' ) and  (1.p ' ) ,
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From this,
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Π
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Taking the logarithm of both sides,
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Using this,

   log( )z = 
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Differentiating both sides with respect to z ,

( )z
  '( )z

 = 
2

log
+B -

z-1
1

-
2
1

( )z/2+1
  '( )z/2+1

+ Σ
k=1



1-
zk

z

-
zk

1

 + Σ
k=1



zk

1

i.e.
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Putting  z =0 ,

( )0
  '( )0

 = 
2

log
+B +1-

2
1

( )1
  '( )1

Here, the following special values are known for  z  and   
 z .

( )0  = -
2
1

   ,    '( )0  = -
2

log 2
   ,    ( )1  = 1   ,     '( )1  = -

So, substituting these for both sides,

log2 = 
2

log
+B +1+

2


From this,

B = log 2+
2

log
 -1-

2


Substituting this for  (1.p ' ) ,  we obtain  (1.0) . Q.E.D.

  If xn = 1/2   n =1,2,3,  ,  (1.1)  becomes
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(1.1 ' )

- 2 -



 Althogh a general formula for generating zeros whose real part is 1/2 is not known, Mathematica  has a function

yn = Im[ZetaZero [n ]]  that generates this numerically. When both sides of (1.1 ' ) are drawn overlapping

using known non-trivial 2,500 zeros, it is as follows..

 As a special value for (1.1) , an important formula used in the next section is obtained.

Formula 8.1.2 ( Special value )

  When non-trivial zeros of Riemann zeta function are xn  i yn   n =1,2,3, , the following expression holds.

Π
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Proof

  Giving z = 1  to  (1.1)  ,
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2
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Π
n =1
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From this,
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  If xn = 1/2   n =1,2,3,  ,  (1.2) becomes

Π
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Σ
r =1



1/4 + yr
2

1

 = e
1+

2


- log2 -
2

log

From this,
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  As a special value for (1.0) , the following formulas is obtained.

Formula 8.1.3 ( Special value )

  When non-trivial zeros of Riemann zeta function are xk  i yk   k =1,2,3, , the following expression holds.
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Proof
  Giving z = -1 , 1  to  (1.0)  respectively,

e
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Multiplying both sides respectively,
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1
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Let zk = xk  i yk   k =1,2,3, .  Then,
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From these,
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(1.3)

  Both sides of  (1.3 )  were computed using known non-trivial 20000 zeros in an attempt. Both sides was equal

up to 3 decimal places.
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8.2 Non-trivial zeros whose real part is not 1/2

  According to Theorem 7.4.1 in " 07 Completed Riemann Zeta ",  if Riemann zeta function  z has non-trivial

zero whose real part is not 1/2 , the one set have to consist of the following four.

1/2+s  is  , 1/2-s is   0 < s < 1/2
In this section,  we will consider how the formulas in the previous section are expressed  when non-trivial zeros

whose real part is 1/2 and non-trivial zeros whose real part is not 1/2  are mixed.

  
Lemma 8.2.1

  Let   be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are xn+ i yn    n =1,2,3, . 

Among them, zeros whose real part is 1/2 are 1/2 i yr   r =1,2,3,  and zeros whose real parts is not 1/2

are 1/2s  is   0 < s < 1/2    s =1,2,3, .  Then  Formual 8.1.1 (1.1)  is expressed as follows.
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Proof

  Formula 8.1.1 (1.1)  was as follows.
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Regarding non-trivial zeros 1/2 i yr   r =1,2,3, whose real part is 1/2, a part of the right side is expressed

as follows.
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2

z
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On the other hand,  regarding non-trivial zeros 1/2s  is    0 < s < 1/2  whose real part is not 1/2, 

a part of the right side is expressed as follows.
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Multiplying these, we obtain the desired expression. 
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Theorem 8.2.2

  Let   be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are xn+ i yn    n =1,2,3, . 

Among them, zeros whose real part is 1/2 are 1/2 i yr   r =1,2,3,  and zeros whose real parts is not 1/2

are 1/2s  is   0 < s < 1/2    s =1,2,3, .  Then the following expressions hold.
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Proof

  Substituting z =1  for  Formula 8.1.1 (1.1) ,
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And, from  (1.11) and  (2.2) ,

Σ
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- log 2-
2

log
 = 0.0230957 (2.4)

  Although the story goes a little aside,  using  (2.2) , we obtain the following special values.

Formula 8.2.3 ( Special values )

  When non-trivial zeros of Riemann zeta function are xk  i yk   k =1,2,3, , the following expressions hold.
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  From the  proof of Formula 8.1.3  in the previous section,
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From  Theorem 8.2.2 ,

Π
n =1
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xn

2+ yn
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 = 1 (2.2)

Substituting this for (z+) ,

Π
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1
 = Π
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1
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1
 = 1 (2.5+)

Substituting this and (z-) for (z0) sequentially,

3


 = 1Π
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1
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1
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  (2.5+) and (2.5-)  were calculated using known non-trivial zeros. It was as follows.
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  Well, let us return to the subject. By using  Theorem 8.2.2 ,  the very important following theorem is obtained.

Theorem 8.2.4

  Let non-trivial zeros of  Riemann zeta function are xn+ i yn    n =1,2,3,  and    be Euler-Mascheroni

constant.  If  the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.

Σ
r =1



1/4+ yr
2

1
 = 1+

2


- log 2-
2

log
 = 0.0230957 (1.2 ' )

Proof

  Although non-trivial zeros 1/2 i yr   r =1,2,3,  exist in fact, assume non-trivial zeros 1/2+s  is  ,

1/2-s  is   (0 < s < 1/2) exist in addition. Then, the following expression holds from  Theorem 8.2.2

(2.3) , (2.4) .

Σ
r =1



1/4+ yr
2

1
 + Σ

s =1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s
 = 1+

2


- log 2-
2

log

Here, the following inequality holds  for 0 < s < 1/2  and arbitrary real number s ,

 1/2s
2s

2

12s
+
 1/2s

2s
2

12s
 = 
  1/2s

2s
2   1/2s

2s
2

1/22s
2 2s

2

 > 0

So,

Σ
s =1  1/2s

2s
2

12s
+
 1/2s

2s
2

12s
 > 0 for  0 < s < 1/2

Thus,

Σ
r =1



1/4+ yr
2

1
 < 1+

2


- log 2-
2

log

i.e.

Σ
r =1



1/4+ yr
2

1
  1+

2


- log 2-
2

log

As the contrapositive to the above, this theorem holds.

Note

  This theorem shows that the equation (1.2 ' )  is equivalent to the Riemann hypothesis. However, for the proof of

(1.2 ' ), the imaginary part yr of the non-trivial zeros 1/2 i yr   r =1,2,3,  have to be obtained as a formula.
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 Both sides of  (1.2 ' )  were calculated with the formula manipulation software Mathematica  using known non-

trivial 200000 zeros. Both sides coincided with four decimal places.
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8.3 Factorization of ( )z

  Formula 8.1.1 ( Hadamard product )  is what  the completed zeta function  z  is incompletely factored

at the non-trivial zeros.  However, using  Theorem 8.2.2 , the compensation terms disappear  and  z  is 

completely factorized at the non-trivial zeros.

Theorem 8.3.1 ( Factorization of ( )z )

 Let Riemann zeta function be  z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed

 zeta function be as follows.

( )z  = -z( )1-z 
-

2

z

 2
z ( )z

Then,  z  is factorized as follows.

( )z  = Π
n =1



 1-
xn

2+ yn
2

2xn z
+

xn
2+ yn

2

z2

(3.1)

Proof

  From  Formula 8.1.1 (1.1) ,

( )z  = e log2 +
2

log
-1-

2


z

Π
n =1



 1-
xn

2 + yn
2

2xn z
+

xn
2+ yn

2

z2

e
Σ
n=1



xn
2 + yn

2

2xn z

On the other hand, from  Theorem 8.2.2 (2.4) , 

Σ
n =1



xn
2+ yn

2

2xn
 = 1+

2


- log 2-
2

log

From this,

e
Σ
n=1



xn
2 + yn

2

2xn z

 = e 1 +
2


- log2-
2

log
z

Substituting this for the right side of the above,

( )z  = e log2 +
2

log
-1-

2


z

Π
n =1



 1-
xn

2 + yn
2

2xn z
+

xn
2+ yn

2

z2

e 1 +
2


- log2-
2

log
z

   = Π
n =1



 1-
xn

2+ yn
2

2xn z
+

xn
2+ yn

2

z2

(3.1)

In addition, this formula is known. 

  If xn = 1/2   n =1,2,3,  ,  (3.1)  becomes

( )z  = Π
n =1



 1-
1/4+ yn

2

z
+

1/4+ yn
2

z2

(3.1')

  When both sides of (3.1') are drawn overlapping using known non-trivial 2,500 zeros, it is as follows..

This is exactly the same as  the one in Formula 8.1.1 (1.1') .
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8.4 Factorization of ( )z

  By replacing z  with z +1/2  in Theorem 8.3.1,  completed zeta function  z that is an even function is

obtained.

Theorem 8.4.1 ( Factorization of ( )z )

 Let Riemann zeta function be  z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed

 zeta function be as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

Then,  z  is factorized as follows.

( )z  = ( )0 Π
n =1



 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

(4.1)

    Where, ( )0 = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.99424155

(4.10)

Proof

  From  Theorem 8.3.1 ,

( )z  = -z( )1-z 
-

2

z

 2
z ( )z

( )z  = Π
n =1



 1-
xn

2+ yn
2

2xn z
+

xn
2+ yn

2

z2

(3.1)

Replacing z  with 1/2+z  in the first expression,

 2
1

+z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z  =: ( )z

Substituting z =0  for this,

( )0  = -
4 1/4

1
 4

1
 2

1
 = 0.99424155

Replacing z  with 1/2+z  in  (3.1) ,

 2
1

+z  = Π
n =1



 1-
xn

2+ yn
2

2xn  2
1

+z +
xn

2+ yn
2

1
 2

1
+z

2

      = Π
n =1



 1-
xn

2+ yn
2

xn
+

xn
2+ yn

2

1/4
-

xn
2+ yn

2

2xn z
+

xn
2+ yn

2

z
+

xn
2+ yn

2

z 2

      = Π
n =1



 xn
2+ yn

2

xn
2-xn +1/4+ yn

2

-
xn

2+ yn
2

 2xn -1 z
+

xn
2+ yn

2

z 2
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i.e.

 2
1

+z  = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

Since  1/2+z  = ( )z ,

( )z  = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

Substituting z =0  for this,

( )0  = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

Substituting this for the right side of ( )z ,  we obtain  (4.1) ,

Lemma 8.4.2

Among  Theorem 8.4.1 (4.1) ,  the product h( )z of the factor whose real part xn  is 1/2  is expressed as

follows.

h( )z  = h( )0 Π
r=1 1+

yr
2

z 2

(4.2)

Where,  h( )0 = Π
r=1



1/4+ yr
2

yr
2

(4.20)

Proof

Replacing a part of xn with 1/2  in  Theorem 8.4.1 , we obtain the desired expression immediately.

Note

It is the Riemann hypothesis  that ( )z = h( )z must be.

Lemma 8.4.3

  Assume that the factor whose real part is not 1/2 exists among  Theorem 8.4.1 (4.1) .  Then, when two real

numbers are s , s s.t.  0 < s < 1/2  &   s > 1/8 ,  the product ( )z  of these factors is

expressed as follows.

( )z  = ( )0 Π
s=1  1+

 s
2+s

2 2

2 s
2 -s

2 z 2

+
 s

2+s
2 2

z 4

(4.3)

Where,  ( )0 = Π
s=1  1/2+s

2+s
2

s
2+s

2

 1/2-s
2+s

2

s
2+s

2

  <  1 (4.30)

Proof

  If such a product of factors exists,  according to Theorem 7.4.1 in " 07 Completed Riemann Zeta ", the one set

have to consist of the following four.
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1/2+s  is , 1/2-s  is  0 < s < 1/2

So, replacing a part of xn , yn   with 1/2s , s  respectively  in  Theorem 8.4.1 ,

( )z =( )0Π
s=1



 1-
 s

2+s
2

2 s z
+
 s

2+s
2

z 2

 1-
 s

2+s
2

2 s z
+
 s

2+s
2

z 2

    = s( )0 Π
s=1



 1-
s

2+s
2

2s z
+
s

2+s
2

z 2

 1+
s

2+s
2

2s z
+
s

2+s
2

z 2

    = s( )0 Π
s=1



 1 + 
 s

2+s
2 2

2 s
2 -s

2 z 2

 +
 s

2+s
2 2

z 4

(4.3)

s( )0 = Π
s=1



 1/2s
2+s

2

 s
2+s

2

 1/2s
2+s

2

 s
2+ s

2

     = Π
s=1



 1/2s
2+s

2

s
2+s

2

 1/2s
2+s

2

s
2+s

2

(4.30)

Last,

  1/2+s
2+s

2   1/2-s
2+s

2

=  1/2+s
2
 1/2-s

2 +  1/2+s
2s

2 +  1/2-s
2s

2 + s
4

= 
16
1

+
2

s
2 -s

2

 + 2s
2s

2 +s
4 +s

4

i.e.

  1/2+s
2+s

2   1/2-s
2+s

2  = 
16
1

+
2

s
2 -s

2

+ s
2+s

2 2

Here, if 0 < s < 1/2  &   s > 1/8  ,  the following inequality holds.

s
2 > s

2 - 
8
1

From this,

16
1

+
2

s
2 -s

2

 > 0

Therefore,

  1/2+s
2+s

2   1/2-s
2+s

2   >  s
2+s

2 2

Since, both sides are positive,

 1/2+s
2+s

2

1

 1/2-s
2+s

2

1
 < 
 s

2+s
2 2

1

From this,

 1/2+s
2+s

2

s
2+s

2

 1/2-s
2+s

2

s
2+s

2

 < 1
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If there are a plurality of such sets,

Π
s=1  1/2+s

2+s
2

s
2+s

2

 1/2-s
2+s

2

s
2+s

2

  <  1

Note

  The conditional expression  s > 1/8   is valid.  It is because the zero of ( )z  does not exist in the

domain 0 < s < 1/2  &   s  1/8  . 

Theorem 8.4.4

  When Riemann zeta function is  z  and the non-trivial zeros sre zn = xn  iyn   n=1,2,3, ,

If  the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.

Π
r=1



1/4+ yr
2

yr
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.99424155 (4.40)

Proof

  Although non-trivial zeros 1/2 i yr   r =1,2,3,  exist in fact, assume non-trivial zeros 1/2+s  is  ,

1/2-s  is   (0 < s < 1/2  &   s > 1/8) exist in addition. Then, the following expression

holds from  Theorem 8.4.1 , Lemma 8.4.2 and Lemma 8.4.3 .

     ( )z = h( )z ( )z

= ( )0 Π
r=1 1+

yr
2

z 2

Π
s=1  1+

 s
2+s

2 2

2 s
2 -s

2 z 2

+
 s

2+s
2 2

z 4

(4.1')

     ( )0 = h( )0 ( )0

= Π
r=1



1/4+ yr
2

yr
2

Π
s=1  1/2+s

2+s
2

s
2+s

2

 1/2-s
2+s

2

s
2+s

2

 = -
4 1/4

1
 4

1
 2

1

      = 0.99424155 (4.10')

And, according to  Lemma 8.4.3 , when 0 < s < 1/2  &   s > 1/8 ,

Π
s=1  1/2+s

2+s
2

s
2+s

2

 1/2-s
2+s

2

s
2+s

2

 < 1 (4.30)

Then, form (4.10') ,

Π
r=1



1/4+ yr
2

yr
2

 > -
4 1/4

1
 4

1
 2

1
 = 0.99424155

i.e.

Π
r=1



1/4+ yr
2

yr
2

  -
4 1/4

1
 4

1
 2

1

As the contrapositive to the above, this theorem holds.
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 Both sides of  (4.40)  were calculated with the formula manipulation software Mathematica  using known non-

trivial 100000 zeros. Both sides coincided with five decimal places.

cf.

 If the square root of  (4.40)  is taken, it is as follows.  This is also equivalent to the Riemann hypothesis. 

Π
r=1



1/4+ yr
2

yr
 = 

2 1/8

1
- 4

1
 2

1
 = 0.99711662 (4.5)

Each factor on the left side is an imaginary part when non-trivial zero zr = 1/2+ i yr  is converted to

polar coordinates.  That is,

Π
r=1



sinr = 
2 1/8

1
- 4

1
 2

1
 = 0.99711662 (4.5)
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