08 Factorization of Completed Riemann Zeta
8.1 Hadamard product of £(z)

Formula 8.1.1 ( Hadamard product of £(z) )

Let completed zeta function be as follows.
z

€ = 2007 21 1 ¢ w

When non-trivial zeros of é(Z) are z, =Xty k=1,2,3, and y is Euler-Mascheroni constant,

5( z ) is expressed by the Hadamard product as follows.

( logz y ) z
log2+—— -1-= |7 » Z —
s@ =e 2 21T ( 1——)e % (1.0)
k=1 Zy
logz y ) > 2XnZ
log2+——-1-< |z « 2Xn Z 7 22
c@) =e 2 2/ 11| 1- ——t— 5 e (1.1)
n=1 XantYn  Xat¥n
Proof
Suppose that the Hadamard product is expressed as follows.
z
E@ = AeP]] 1-L |e= 1
11 2 (1.p)
And let us find A and B of this. As first,
2V _2,{z4
2 z 2
Substituting this for (1.d),
z
— 2] 2
@ = 2007 21| 34160 )

Substituting Z =0 for (1.d"),
0

£Q0) = -2(1-0)z 2 /‘(g+1)§(0) = -2-1-(-%) =1

Substituting Z =0 for (1.p), £(0)= A . We obtain A=1 from both. Thus,

z
00 Z -
Q@) = eBZH(l——)eZk (1.p")
k=1 Zy
Next, from (1.d')and (1.p'),
Z Zz
—2(A-Dx Zr( i+1)§(z) = e® ] ( 1—i)e“
2 k=1 Zx

From this,



z

O o

Taking the logarithm of both sides,

z
logd @) = %IogfﬁBz —IogZ—Iog(z—l)—log/‘( %+1) +log 1] ( 1- £ ) o %

Zy
Here,
z
- & YA o Z
IogH(l——) “=2lo (1——) + X —
Zy k=1 Zy k=1 Zy
Using this,
Zz ® Z
logd@) = —Iogzz+Bz log2-log(z-1)- Iogl( —+1 +Z Iog( 1—2— +> >
=1 K k=1 Zk
Differentiating both sides with respect to Z ,
1
'@ logr 1 175@2+D) = o1
= +B-——— = 4 + —
@) 2 B z-1 2 [(Z/2+1) = 1_i kgl Zx
Z
i.e.
@ _ logz 1 1 F(z/2+1)+ o 1 .1
‘@ 2 -1 2 I'@/2+) &\ z2-z0 z
Putting 2=0,
é/ (O) - Iogﬂ. +B +1_£F—(l)
4(0)) 2 2 1D
Here, the following special values are known for é(z) and F(Z) .
1 - log 27z :
(@=-5  (@=-"F , I®=1, I'®=-
So, substituting these for both sides,
log 7 y
= +B+1+ =
log 27 5 B+1 5
From this,
logz y
= + —-1-L
log 2 5 5
Substituting this for |(1.p")|, we obtain | (1.0). Q.E.D.
f X, =1/2 n=1,2,3, , (1.1) becomes
( logz 1) 2 :
log2+ -1- Z © 7 Z >
— 2 2 1/4 +
Z) = e II{1- + e yo (1.1
- 1( Va+yy 1UA+yy



Althogh a general formula for generating zeros whose real part is 1/2 is not known, Mathematica has a function
yn = Im [ZetaZero [n]] that generates this numerically. When both sides of [1.1") are drawn overlapping

using known non-trivial 2,500 zeros, it is as follows..

\ 120} — {2
f{z, 2500)

115+

110+

, 1.06¢

(i

As a special value for (1.1) , an important formula used in the next section is obtained.

Formula 8.1.2 ( Special value )

When non-trivial zeros of Riemann zeta function are X, % i Yo N =1,2,3, -, the following expression holds.
2Xn
0 2Xn—1 W24 2 l+%—|092—|0%Z
1-——— |e” m=e = 1.02336448 (1.2)
=L X tyn
Proof
Giving Z = 1 to[ (1.1)],
logr 7 2Xn
log2 + -1-£ » 2x,-1 2. .2
5(1) =g 2 ZU 1- > . eXn+yn =1 (1.1,)
n=t Xy ¥ Yn
From this,
logz
00 2X —1 2 2 1+l—|092 -
[[|1-—"— |e¥™" =e 2 2 (1 =1.02336448-) (1.2)
n=1 Xn T Yn

f X, =1/2 n=1,2,3,~ , (1.2) becomes
_ 212 g1 ’ oup 1007
e BN o e R e

s

1 1- 24,2
f /2" +y;
From this,
0 1 y log
——— =1+%-log2-—— = 0.0230957 - 1.2
ngl 1/4+y? 2 2 "



As a special value for (1.0) , the following formulas is obtained.

Formula 8.1.3 ( Special value )

When non-trivial zeros of Riemann zeta function are X, * i Yk k=1,2,3, -, the following expression holds.
00 1 1 T
H[l——z 1——2 = § (1.3)
n=1 (Xn‘HYn) (Xn_Wn)

Proof

Giving Z= -1, 1 to|(1.0)| respectively,

( logrz l) 1
- log2+— -1- o 1 -— T
2 2 1+_ Zk - _1 -
¢ H( 2 )e 5D =3

( logr l) 1
log2+—— -1- ® 1 —

2 2 1-Sler=e@ =1
e kHl( . )e €

Multiplying both sides respectively,

] (+5) -3

k=1 Zy Zy

Let Z, =X, 1y, k=1,2,3, . Then,
s 1 o 1 1
f o ) =1 ) (5
k=1 Zx n=1 Xn +1Yn Xn = 1Yn
S 1 1
IT . (1+ )
k=1 Zy n=1 Xn T 1Yn Xn—1Yn

Therefore,
s 1 1 Vs
H[l——_}{l——_} -z 05
n=t (X +iyn)? (X =iyn)® 3

Both sides of (1.3 ) were computed using known non-trivial 20000 zeros in an attempt. Both sides was equal

up to 3 decimal places.
:= Conjugate[zo,]

zo, := ZetaZerol[n] ECHh_
o 1 1 w
gl[m ] ::n[l- ] [1- ] gr := —
n=1 20112 chz 3
N[gl[20000]] N[gr]
1.0472

1.04703+0.1



8.2 Non-trivial zeros whose real part is not 1/2
According to Theorem 7.4.1 in '| 07 Completed Riemann Zeta[', if Riemann zeta function g( Z ) has non-trivial

zero whose real part is not 1/2 , the one set have to consist of the following four.
In this section, we will consider how the formulas in the previous section are expressed when non-trivial zeros

whose real part is 1/2 and non-trivial zeros whose real part is not 1/2 are mixed.

Lemma 8.2.1

Let » be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are X+ i Yo N =1,2,3, .

Among them, zeros whose real part is 1/2 are 1/2+iy, r=1,2,3, and zeros whose real parts is not 1/2

are /2t o tiff; (0<ag<1/2) $=1,2,3, . Then[Formual 8.1.1 (1.1)]is expressed as follows.

z

(Iogz+—”—1—l)z o 7 72 ——
o I A RS s | YN Sl P
ARV
(1+204)2
y o (I2a)z 22 o (V2Zraehs
s=1 (V/2+a,)%+82  (U2+a,)*+p57
(1-204)2
1-2 z 2 N2, 02
X 1- (1-2a) + : e (Vs o)
s=1 (V/2-a,)%+p2  (U2-a4)+p5°
Proof
Formula 8.1.1 (1.1) was as follows.
(|092+ logz 1.7 )Z % 7 22 2z
—-1-= @ n 2, .2
@ =e 2 I -t [e ) (1.1)
n=1 XntYn  XntYn

Regarding non-trivial zeros 1/2+ 1y, r=1,2,3, - whose real part is 1/2, a part of the right side is expressed

as follows.

2 z

I1{1-—= - Z 5 g VA
=t a+yr  14+y;

On the other hand, regarding non-trivial zeros 1/2+ g £if; (0 < < 1/2) whose real part is not 1/2,

a part of the right side is expressed as follows.

(1+204 )2
I1!1- ( 1+2a; ) z 22 o (V2+ag )+
s=1 (1/2+0) 2457 (U2+ag) %+ 2
(1-2a5)z
L (2a)z 2P o (V205

Hl (1/2-0) 2457 (U2-a5) %+ 2

Multiplying these, we obtain the desired expression.
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Theorem 8.2.2

Let » be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are X+ i Yo N =1,2,3, .
Among them, zeros whose real part is 1/2 are 1/2+1y, r=1,2,3, - and zeros whose real parts is not 1/2

are /2t tifl; (0<og<1/2) $=1,2,3, . Then the following expressions hold.

s 2x,-1
11! 1- 2” . 2.2)
n=1 Xp +Yn
o  2X o 1 1+2¢ 1-2¢
5 2n2= —2+2[ ; S+ ; . 2.3)
"=l Xo+yy L AUA+yS s (U2+4a) B (U2-ag) “+ps
o 2X
Y — “2 :1+l-|og2-'°ﬂ = 0.0230957 - 2.4)
"1 Xg 4 2 2
Proof
Substituting Z=1 for [Formula 8.1.1 (1.1)}
log ¥ 2Xn
log2+——-1-+ o 2x.-1 2. 2
5(1):(9 2 ZH 1- 2n . eXn+yn =1 (1.1,)
n=1 Xn +Yn
Substituting Z=1 for[Lemma 8.2.1 (2.1)}
logz ¥
log2 +——-1-+% 2a. 2«
s =e 2 ZH{l‘ Sz 2}{1+ Sz 2}
s=1 (1/2+a5) “+3; (1/2—a5 ) “+5;
w 1 1+2a; 1-2a
2+Z 2 2+ 2 2
X e HAASye ST (V2rag ) B (V2mos ) 2.14)
From these,
S 2x,-1 2a, 2a
A N AN 7
n=1 Xn tYn s=1 (]/2"'0%) +05 (]/2_0%) +05
- g1 s 1+2az . 1—20:Z :
e x2+y? _ o LAy ST (W2+ag )+ (V2-ag)
Here, conveniently,
20 20
1- > 1+ >
(1/2+ay) %+ (1/2-ay) %+
1 20, 20 20 20
=1+ - -
(1/2—053)2+,BS2 (1/2+as)2+,332 (1/2—053)2+ﬂ52 (1/2+as)2+,832
14 2a 2a; 2a 2a

(V2-0) 2482 (V2405)2482 (12— )24 /2 (U2+a,) %42

So,



% 2X—-1
H(l— n ):1 2.2)

=Ll g Yy
o 2X ® 1 1+2« 1-2«.
"=l Xo+yy 7L AUA+yS =L (U2+a) B (U2-a) +f
And, from [(1.1))]and (2.2),
00 2X lo
Y ——— =1+L _1og2- =% =0.0230957 2.4)
n=1 XI’] +yn 2 2
Although the story goes a little aside, using (2.2) , we obtain the following special values.
Formula 8.2.3 ( Special values )
When non-trivial zeros of Riemann zeta function are X & i Yk k:1, 2,3, -, the following expressions hold.
S 1 1
1- - 1- - =1 (2.5,)
n=1 Xn+|yn Xn_lyn
00 1 72'
111 1+ - 1+ - == (2.5)
n=1 Xn +1Yn Xn—1Yn 3
Proof

From the |proof of Formula 8.1.3|in the previous section,

2 1 2 1 1 2 2%,-1
1_— = 1— - 1— . = 1_ +
kl;Il( Zy ) nl:Il( Xn T 1Yn ( Xn~1Yn ) g( Xf12+ynz) “
00 1 00 1 l o 2Xn+1
1+— | = 1+ . 1+ . = 1+

H( Z ) Hl( Xn+iYn ( Xn—'yn) Hl( Xn2+ynz) -
T s 1 1
= =1I[1-= || 1+=
3 i1 ( Z ( Z )
% 2x,-1
H(l_ 2” 2) =1 (2.2)
n=1 Xn *Yn

Substituting this for (z,) ,
00 1 0 1 1
H(l——)zﬂ(l— ; (1— ; )zl 2.5,)
k=1 Zy n=1 Xn T 1Yn Xn—1Yn

Substituting this and (z_) for (z) sequentially,

00 1 0 1 1

£=1-H(l+—)=H(1+ _ (1+ . ) (2.5)
3 k=1 Zy n=1 Xn+1Yn Xn —1Yn

(2.5,) and (2.5.) were calculated using known non-trivial zeros. It was as follows.



zo, := ZetaZero[n] zc, := Conjugate[zo,]

gy [m ] := ﬁ[l—i] [l—i] g-[m ] := H[1+

1
1+ —
ZC |

n=1 " Z0q ZCp n=1 Z0p
N[g, [1000] ] N[g.[20000]] N[# / 3]
1. +0.1 1.04703+0.1 1.0472

Well, let us return to the subject. By using Theorem 8.2.2, the very important following theorem is obtained.

Theorem 8.2.4
Let non-trivial zeros of Riemann zeta function are X,+iy, N=1,2,3,- and y be Euler-Mascheroni
constant. If the foIIowing expression holds, non-trivial zeros whose real parts is not 1/2 do not exist.

i :1+l—logZ—
r=1 1/4+yr2 2

1007 _ 0230957 (1.2)

Proof

Although non-trivial zeros 1/2+iy, r=1,2,3, - existin fact, assume non-trivial zeros 1/2+ o +if; ,
/2- o tif; (0 < o< 1/2) exist in addition. Then, the following expression holds from
2.3), 2.4)]

o 1+2¢ 1-2¢
X { 2 : 2]:“1"092— logz
r=1 1/4+yr s=1 (1/2+ocs)2+,8s (1/2—055)2+ﬂS 2 2
Here, the following inequality holds for O < ¢t < 1/2 and arbitrary real number [,
1420, 1-20  _ 1/2-202+2p7 o
(V2ra )52 (12-a)%+p7 {(V2ra) 42} | (V2-0) %452
So,
1420 1-2¢
>+ . >0 for 0<o,<1/2
=1 (U240) %450 (Y2-05) %+
Thus,
i . <1+L- log2- logz
r=1 1/4+yr 2 2
i.e.
® 1
E— 1+ _ log2 - logz
r=1 1/4+yr 2 2

As the contrapositive to the abowe, this theorem holds.

Note
This theorem shows that the equation (1.2') is equivalent to the Riemann hypothesis. However, for the proof of

(1.2"), the imaginary part Y, of the non-trivial zeros 1/2+1y, r=1,2,3, have to be obtained as a formula.



Both sides of |(1.2") | were calculated with the formula manipulation software Mathematica using known non-
trivial 200000 zeros. Both sides coincided with four decimal places.

yr = Im[ZetaZero[r]] ¥ := EulerGamma
o 1 v Log[]
gl[m ] := _— gr :=1+ — - Log[2] - ——
r=11/4+ er 2 9
N[gl[200000]] N[gr]
0.0230832 0.0230957



8.3 Factorization of £(z)

Formula 8.1.1 ( Hadamard product ) is what the completed zeta function f(Z ) is incompletely factored

at the non-trivial zeros. However, using Theorem 8.2.2 , the compensation terms disappear and §( YA ) is

completely factorized at the non-trivial zeros.

Theorem 8.3.1 ( Factorization of #(z))

Let Riemann zeta function be £(Z ) , the non-trivial zeros are Z,, = X,*iy, N=1,2,3, and completed

zeta function be as follows.
z

@ = 2007 21| 5 )¢

Then, f( Z ) is factorized as follows.

@© 2Xn YA 22
@ =1l|1-——+——
n=1 Xy tyn  Xatyn
Proof
From |Formu|a 8.1.1 (1.1)|,
logz 14
(Iogz+——1—— Z o 2X, Z
- 2 2 n
@ = [1|1-———
n=1 Xn tyn
On the other hand, from |Theorem 8.2.2 (2.4)|,
o 2X logrz
n=1 Xn +yn 2 2
From this,
©  2XnZ
14 logz
< _ | _
e”=1XnZ+YnZ :e(1+2 092 2 )Z
Substituting this for the right side of the abowve,
logz y)
(Iogz+ “1-Z |7 o 2X. 7
- 2 2 n
@ =e [1|1-———
n=1 Xn T Yn
L T 24002 U242
n=1 Xptyn  Xptyp

In addition, this formula is known.

fx, =1/2 n=1,2,3,~ , (3.1) becomes

w 7 72

7) = - +
O = Wz ey

(3.1)
> % 2XnZ
Z o TIXE YR
2 2
Xa +Yn
22 1+L - IogZ—w
, 2 2
2+ 2 €
Xn T Yn
(3.1)
(3.1

When both sides of (3.1") are drawn overlapping using known non-trivial 2,500 zeros, it is as follows..

This is exactly the same as | the one in Formula 8.1.1 (1.1") |

-10-
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8.4 Factorization of 5(z)
By replacing Z with Z+1/2 in Theorem 8.3.1, completed zeta function E( Z ) that is an even function is

obtained.

Theorem 8.4.1 ( Factorization of 5 ())
Let Riemann zeta function be £(Z ) , the non-trivial zeros are Z,, = X,*iy, N=1,2,3, and completed

zeta function be as follows.

0 =-{3)(34) 3 3]l 3

—

Then, :,( Z ) is factorized as follows.

_ ® 2(x-1/2)z z°
z(z):E(O)H[l— 0 2) >+ . 2} @.1)
n=t (Xn_llz) *Yn (Xn_llz) *Yn
= (%-1/2)%+y7 1 1\ /1
, 2(0)= = - Il — — | =0.99424155-
Where () nI=Il x,12+y,12 47[1/4 ( 4 )é/( 2)
4.1o)
Proof
From [Theorem 8.3.1],
z
-5 [z
€ = 2a-Dx 1| 5 6@
% 2%, Z 72
§(Z)ZH(1— 2n2+ > 2) 3.1)
n=1 Xa*t¥Yn  Xa tYn

Replacing Z with 1/2+Z in the first expression,

[ 302) == (3] () M3 3] 3] = 0

Substituting Z=0 for this,

20 = - 11/4F( %){( %) = 0.99424155-
4r

Replacing z with 1/2+z in (3.1),

1 s 2X 2
2 0 xZeyg N2 x2ey2 ) 2

BNV
=Ll XeHYe XtV XatYe XetVe Xa Ve
_Io_oI{xnz—xn+1/4+yn2 (ZX”_1)2+ 22 }
n=1 Xy + Yo Xe+¥n  XotYe

-12-



1 o (X=1/2)2+y2 2(x,-1/2)z 2
§(§+Z):H(n 2)2 ks U 2) 2 ¥ ; 2,2
e (X=1/2)%+yy  (X,=1/2)%+y,
since £(1/2+2) = =2(2),
_ o (X=1/2)%+y ] 2(x,-1/2)z 72
@ =11 n 2,2 —11- ; 2.2 2.2
e (X=1/2)%+yy  (X,=1/2)%+y,

Substituting Z=0 for this,

© = 17 YR

_ 2 2
n=1 Xn T Yn

[y

Substituting this for the right side of E(Z) , We obtain ,

Lemma 8.4.2
Among | Theorem 8.4.1 (4.1)|, the product Zh (Z) of the factor whose real part X,, is 1/2 is expressed as
follows.
7 2
5@ =5011|1+— “2)
r=1 y
r
2
— M Yr
where, 5;,(0)= H—Z (4.2)
=1 1/4+y;
Proof

Replacing a part of X, with 1/2 in Theorem 8.4.1 , we obtain the desired expression immediately.

Note
It is the Riemann hypothesis that Z(Z) = Z;,(Z) must be.

Lemma 8.4.3

Assume that the factor whose real part is not 1/2 exists among [Theorem 8.4.1 (4.1) .| Then, when two real
numbers are &, ff; S.t- 0<a<1/2 & |Bs| >4/ 1/8, the product Zx(Z) of these factors is

expressed as follows.

- 2(f-ac)” o
Q@) :50,(0)S:H1 1+ ( 52 52>2 —s (4.3)
(0!5 +ﬁs> (0{5 +;Bs>
2 2 2 2
a; t o +
where, Z,(0)= 11 s s s s <1 (4.30)

s=1 (1/2+0¢S)2+ﬁs2 (1/2-as)2+,352

Proof

If such a product of factors exists, according to Theorem 7.4.1 in "[07 Completed Riemann Zetal", the one set

have to consist of the following four.

-13-
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1/2+(Zsiiﬂs y 1/2—asiiﬂs (0<as< 1/2)
So, replacing a part of X, , Y, with 1/2i0{S ) ﬂs respectively in ,
) 2(+ag)z 2 2(~ag)z 2
Eo(z):ga(O)H[ 1- : () + £ }[ 1- : (=) + z ]
s=1

+as)2+ﬂ52 (+as)2+:552 _as)z"'ﬂsz (_as)z"'ﬂsz

o 2 2 2 2
:ES(O)H(l— %2 2 )(1+ ki Z )
s=1

+
2 2 2 2 2 2 2 2
as +fs  og as +fs; gt

L 2pi-al)? ]
)

(4.3)
o 2 2
! < asz +ﬂ52> ( asz +:Bsz
S = [- U  Ce)
- s=1 (1/2+as)2+ﬂ52 (1/2_055)2"':552
1] o+ o+ s
= 30

s=1 (1/2+as)2+ﬂ52 (1/2_055)2"':552

{(v2+a)?+ g2} (1/2-0) 2+ 57
= (U2+0a,)2(1/2-05)2 + (1U2+a5) 27 + (U202 B2+ B

1 pE-ad
= —+
16

+2a2pC+ ol +

2 2
{ (1/2+as)2+ﬂ52} { (1/2_as)2+ﬂ52} = 1_16+ & ;“s +( a52+,352>2

Here, if 0< o, <1/2 & |f;|>4/1/8 . the following inequality holds.

2 2 1

Bs > as - §
From this,

2 2

1 s — s

+ >0
16 2

Therefore,

{ (1/2+055)2+ﬂ52} { (1/2_as)2+ﬂ52} > (a52+,352>2

Since, both sides are positive,

1 1 3 1
(1/2+a,)2+p52 (1/2-04)2+p2 <a52+,[352>2
From this,
o +fS o+

<1
(1/2+055)2+ﬂ52 (1/2—055)2+ﬁ52

-14-



If there are a plurality of such sets,
2 2 2 2
as + [ a5 + [

=1 (U2+a5) 2+ 50 (1/2-a,)2+p2

Note
The conditional expression |ﬂs | >4/ 1/8 s valid. It is because the zero of é’(Z) does not exist in the
domain 0< < 1/2 & |fBs| <4/ /8 .

Theorem 8.4.4

When Riemann zeta function is £(Z ) and the non-trivial zeros sre Z,, = X, iyn n=1,23, -,

If the following expression holds, non-trivial zeros whose real parts is not 1/2 do not exist.

" 1 1) (1
m—r - r( Z)g( E) = 0.99424155 - (4.40)

Proof

Although non-trivial zeros 1/2+1y, r=1,2,3, exist in fact, assume non-trivial zeros 1/2+ o i ,

/2-a,+iffy (0<oas</2 & |Bs | >4/1/8) exist in addition. Then, the following expression
holds from |Theorem 8.4.1|, |Lemma 8.4.2 and Lemma 8.4.3|.

Z@Q= 5@ E0)
::(O)H(1+Z_z).n[1+

2<ﬂ52_a52>22+ 2% }

(4.1
r=1 yo | sl ( o2 +,352> 2 ( o2 +,352> 2
2= 5 ) z(0)
- T yr2 asz +ﬁ52 asz +1352 _ 1 1 1
== e vyl e L
=1 1/4+y" =1 (12+ag) "+ (1U/2-o5) "+ s Ar
= 0.99424155 - (4.19)
And, according to Lemma 8.4.3, when 0 < o, <1/2 & |B;|>+/1/8 ,
o +fL o+
<1 (4.3,)

=1 (12+a)?+ 0 (U2-a,) %+ )57
Then, form (4.1;)) ,

2

oYy 1 1 1

> - = ¢ = | =0.99424155-
E VA+yF 474 ( 4)4( 2)

2
G 1 1 1
=1 1/4+y 2 agt \ 4 °\ 2

As the contrapositive to the abowe, this theorem holds.

-15-



Both sides of |(4.4,)| were calculated with the formula manipulation software Mathematica using known non-
trivial 100000 zeros. Both sides coincided with five decimal places.

yr := Im[ZetaZero[r]]
m 2
m Vr 1 1 1
Eglm. ] := H— BE[0] := - Gamma[—] Zeta[—]
=11/44+ ?rz 4 ylid 4 2
N[&E5[100000]] N[E[0]]
0.994247 0.994242
cf.

If the square root of (4.4,) is taken, it is as follows. This is also equivalent to the Riemann hypothesis.

® Y 1
11 = «/ ( ) ( = ) = 0.99711662 - 4.5)
r=1 / 1/4+yr2 1/8 2

Each factor on the left side is an imaginary part when non-trivial zero Z, = 172 +i Y is converted to

polar coordinates. That is,

[Tsing = — «/ r( L );( = ) = 0.99711662 (4.50)
- A2ld 2 =o. 5
=1 o8 4 )7\ 2
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