
Graphical Proof of the Riemann Hypothesis

Abstract

(1) The problem of Zeros of the Riemann zeta function is reduced to the system of transcendental equations

     consisting of 4 equations with 2 real variables, by functional equation.

(2) On the critical line,  certain 2 equations are identically 0, and the remaining 2 equations have simultaneous

    solutions.

(3) Except on the critical line, the two equations do not have simultaneous solutions in the critical strip.

    This can be illustrated by transition diagrams from above and below the contour line. And such transitions

    are more pronounced where the imaginary part of the variable is large.

(4) As a result of (3),  the system of transcendental equations of (1) have no solution in the critical strip except

    on the critical line. Thus, the Riemann Hypothesis holds true.

1 Introduction

Riemann Zeta Function

  Riemann Zeta Function  z  is defined by the following Dirichlet series.

( )z  = Σ
r=1



e-z log r = 
1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re z  > 1 (1. )

This function is analytically continued to Re z  < 1 , and has trivial zeros z = -2n   n =1,2,3,

and non-trivial zeros z = 1/2  bn   n =1,2,3, . So, it is the Riemann hypothesis that there will be no

non-trivial zeros other than these. In addition,  it is known  that non-trivial zeros exist only in the critical strip

0 < Re z  < 1 .  Also, the center line Re z  = 1/2  is called the critical line .

Dirichlet Eta Function

  Dirichlet Eta Function  z  is defined by the following Dirichlet series.

( )z  = Σ
r=1


( )-1 r-1e-z log r = 

1z

1
-

2z

1
+

3z

1
-

4z

1
+-  Re z  > 0 (1. )

This function is analytically continued to Re z   0 ,  and has the following relation to  z .

( )z  = 
1-21-z

1
( )z z1

Therefore  z and  z  share trivial and non-trivial zeros. In addition,  z  has ( )z -specific zeros

z = 12n/log 2   n=1,2,3, . These are the zeros of 1-21-z = 0 .

Dirichlet Series to use

  The right-hand sides of (1. ) and (1. ) are called Dirichlet series.  (1. ) , which is the definition of  z ,

is not suitable for analysis in the critical strip.  This is because  even if the Euler transformation or the like is

applied, it will only be an asymptotic expansion.  On the other hand,  (1. ), which is the definition of  z ,

can be used as it is in the critical strip. So, in this paper,  we use (1. )  to analyze the zeros of the Riemann

zeta function  z . 
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2 Zeros of  z  and System of Equations

  In this chapter, we consider the problem of  zeros of the Dirichlet Eta function  z  from the point of view

of the system of equations.

Lemma 2.1

  When the set of real numbers is R  and Dirichlet eta function is  z    z = x +i y ,  x ,y  R ,

 z  = 0  in 0 < x < 1   if and only if  the following system of equations has a solution on the domain.


 z   = Σ

r=1


( )-1 r-1 e-z log r   = 0 (2.1+)

 1-z  = Σ
r=1


( )-1 r-1 e- 1-z  log r = 0 (2.1-)

Proof

  The following functional equation holds for the Dirichlet Eta function  z .

 2
z


-

2

z

 1-2z  z  =  2
1-z


-

2

1-z

 1-21-z  1-z 0 < Re z  < 1

Gamma function and powers of   have no zeros,  and 1-2z , 1-21-z  have no zeros in 0 < Re z  < 1
Therefore, at the zero of  z ,

 z  =  1-z  = 0 0 < Re z  < 1

Representing  z  ,  1-z  by Dirichlet series respectively,  we obtain the desired expressions.

Note1

 Since there are 2 equations for 1 complex variable in the lemma, this system of equations is an overdetermined

system. Such a system of equations generally has no solution. What forces this overdetermined system is the

functional equation clearly.

Note2

(1) When x =1/2 ,  the overdetermined property disappears.  Because,


 1/2+i y  = Σ

r=1


( )-1 r-1 e- 1/2 + iy  log r  = 0 (2.1+)

 1/2-i y  = Σ
r=1


( )-1 r-1 e- 1/2 - iy  log r = 0 (2.1-)

i.e.


 1/2+i y  = Σ

r=1



r

( )-1 r-1 

 cos y log r  - i sin y log r  = 0 (2.1+)

 1/2-i y  = Σ
r=1



r

( )-1 r-1 

 cos y log r  + i sin y log r  = 0 (2.1-)

At zero point  1/2 , y ,

-Σ
r=1



r

( )-1 r-1 

sin y log r  = Σ
r=1



r

( )-1 r-1 

sin y log r  = 0

So,  (2.1+) and (2.1-)  become substantially the same equation.
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(2) When x 1/2 ,  This system of equations is an overdetermined system.

    Even though (2.1+) and (2.1+)  are different equations, they must share one complex number. The Riemann

hypothesis says that such a thing will not happen.

  Replacing z  with 1/2+z ,  we obtain the following equivalent lemma.

Lemma 2.1'

  When the set of real numbers is R  and Dirichlet eta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.


 2

1
+z  = Σ

r=1



r

( )-1 r-1

e-z log r = 0 (2.1'+)

 2
1

-z  = Σ
r=1



r

( )-1 r-1

ez log r = 0 (2.1'-)

Note

(1) The overdetermined property is the same as in Lemma 2.1.

(2) The known non-trivial zeros are moved parallel onto the new critical line Re z  = 0

(3) When x =0 ,  the overdetermined property disappears.

(4) When x 0 ,  if  there are zeros, the one set consists of the following four.

a  ib , -a  ib ( ) -1/2 < a < 1/2 

Hyperbolic Function Series
  Lemma 2.1 '  is equivalent to the following

Lemma 2.2

  When the set of real numbers is R  and Dirichlet eta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.


c( )z  = Σ

r=1



r

( )-1 r-1

cosh( )zlog r  = 0 (2.2c )

s( )z  = Σ
r=1



r

( )-1 r-1

sinh( )zlog r  = 0 (2.2s )

Proof
  From  (2.1'+) , (2.1'-) ,

2
1
  2

1
-z + 2

1
+z  = Σ

r=1



r

( )-1 r-1

2
ez log r + e-z log r

 = Σ
r=1



r

( )-1 r-1

cosh( )zlog r  = 0
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2
1
  2

1
-z - 2

1
+z  = Σ

r=1



r

( )-1 r-1

2
ez log r - e-z log r

 = Σ
r=1



r

( )-1 r-1

sinh{ }z log r  = 0

Describing these as c( )z ,s( )z  respectively,  we obtain the desired expressions.

Conversely, by adding or subtracting these,  (2.1'+) , (2.1'-)  are obtained.

Note

  c( )z ,s( )z are the sum and difference between Dirichlet series. Therefore, their convergence region is

-1/2 < x < 1/2 .

Hyperbolic Function Series (real part, imaginary part)

Theorem 2.3

  When the set of real numbers is R  and Dirichlet eta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.

uc( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  cos( )ylog r  = 0

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0

vs( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  sin( )ylog r  = 0

Proof

cosh( )x+iy  = cosh x cos y + i sinh x sin y

sinh( )x+iy  = sinh x cos y + i cosh x sin y
Replacing x with x log r  and y with y log r  respectively,

cosh( )zlog r  =  cosh( )xlog r cos( )ylog r + i sinh( )xlog r sin( )ylog r

sinh( )zlog r  =  sinh( )xlog r cos( )ylog r + i cosh( )xlog r sin( )ylog r
Substituting these for (2.2c) , (2.2s)  respectively,

c( )z  = Σ
r=1



r

( )-1 r-1

cosh( )zlog r

    =  Σ
r=1



r

( )-1 r-1

 cosh( )xlog r cos( )ylog r + i sinh( )xlog r sin( )ylog r
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s( )z  = Σ
r=1



r

( )-1 r-1

sinh( )zlog r

    =  Σ
r=1



r

( )-1 r-1

 sinh( )xlog r cos( )ylog r + i cosh( )xlog r sin( )ylog r

Describing the real and imaginary parts as uc x ,y  , vc x ,y  , us x ,y  , vs x ,y  respectively,
we obtain the desired expressions.

Overdetermined System
 Since there are 4 equations for 2 real variable in Theorem 2.3 , this system of equations is an overdetermined

system. Such a system of equations generally has no solution.

Zeros on the Critical Line 

  However, such a system of equations may exceptionally has solution. That is the case when x =0 .  Note

that x =0  is the critical line of function 1/2+z . Substituting x =0  for the equations in Theorem 2.3

uc( )0,y  =  1Σ
r=1



r

( )-1 r-1

cos( )ylog r  = 0

vc( )0,y  =  0Σ
r=1



r

( )-1 r-1

sin( )ylog r  = 0

us( )0,y  =  0Σ
r=1



r

( )-1 r-1

cos( )ylog r  = 0

vs( )0,y  =  1Σ
r=1



r

( )-1 r-1

sin( )ylog r   = 0

Since vc 0,y  , us 0,y are equal to non-existent, the overdetermined property disappears.  As the result,

0 = uc( )0,y - i vs( )0,y  = Σ
r=1



r

( )-1 r-1

 cos( )ylog r  - i sin( )ylog r

= Σ
r=1



r

( )-1 r-1

 cos( )ylog r  + i sin( )ylog r

i.e.

0 = Σ
r=1



r

( )-1 r-1

e-y log r = Σ
r=1



r

( )-1 r-1

ey log r

That is, they reduce to the case of x =0  in  Lemma 2.1'.  These solutions are zeros on the critical line.

  When x =0 ,  uc  vs  are drawn as follows.  Blue is uc  and  orange is vs . 
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The points ( red ) where these intersect on the y -axis are the zeros of  1/2z . Magenta is vc  and

cyan is us .  They overlap on the y -axis.  Of course,  these 2 straight lines also pass through the red points.

Zeros outside the Critical Line

  If x  deviates even slightly from 0 ,  vc , us  cease to be straight lines.  For example, when x =0.000001 ,

  As the result,  the property of overdetermination is restored.  For example, when x =0.25 , uc  vs  are

drawn as follows.  It seems unlikely that the 4 curves would intersect at one point on the y -axis.

Propositions equivalent to the Riemann hypothesis

  Theorem 2.3  is equivalent to that the following 6  pairs have a common solution.  Each pair is one of the

necessary conditions for  1/2z  to have zeros.


uc = 0

vc = 0
   ,   

uc = 0

us = 0
,   

uc = 0

vs = 0
  ,   

vc = 0

us = 0
   ,   

vc = 0

vs = 0
   ,   

us = 0

vs = 0

Therefore, to prove the Riemann hypothesis,  it is sufficient to show that any one of these pairs does not have

a solution such as x0 . 

  The most interesting of these is vc = 0  and us = 0  pair. This pair is unlikely to intersect at a point on the 

y -axis when x 0 , as seen in the 2D figure above. So, we can present the following proposition, which is

equivalent to the Riemann hypothesis.

Proposition 2.4

  When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations

has no solution such that x 0 .
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
vc( )x,y  =  Σ

r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0     (2.4c )

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0     (2.4s )

  If this proposition is proved,  then by  Theorem 2.3 ,  1/2  z  has no zeros such as x 0 .

Euler Transformation and  Expression by η function

  Since the convergence speed of the series in Theorem 2.3  is slow,  accurate calculations and drawings

are difficult at small y . In order to deal with this, in this paper we apply the Euler transformation to the series.

This transformation accelerates the convergence of the series and even applies the summation method.

uc( )x,y,m  =  Σ
k=1

m

Σ
r=1

k

2k+1

1
 

k
r r

( )-1 r-1

cosh( )xlog r  cos( )ylog r

vc( )x,y,m  =  Σ
k=1

m

Σ
r=1

k

2k+1

1
 

k
r r

( )-1 r-1

sinh( )xlog r  sin( )ylog r

us( )x,y,m  =  Σ
k=1

m

Σ
r=1

k

2k+1

1
 

k
r r

( )-1 r-1

sinh( )xlog r  cos( )ylog r

vs( )x,y,m  =  Σ
k=1

m

Σ
r=1

k

2k+1

1
 

k
r r

( )-1 r-1

cosh( )xlog r  sin( )ylog r

  In addition, vc x ,y , us x ,y  are represented by the Dirichlet eta function  x,y , and the calculation 

routine of  x,y  in formula manipulation software Mathematica  is used.  These are represented as follows.

vc( )x,y  =  
2
1
 Im  2

1
 x - i y + Im  2

1
+ x + i y (2.4c' )

us( )x,y  =  
2
1
 Re  2

1
 x - i y - Re  2

1
+ x + i y (2.4s' )
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3 Amplitude of vc x,y  with respect to y

  Among the equations in  Proposition 2.4 , vc x , y  was as follows.

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r (2.4c)

In this chapter, we consider the amplitude of this function with respect to y

3.1 sin(y log r)

  Let r,y  are positive numbers respectively, and consider the following function s r ,y .

s( )r, y  = sin ( )y log r (3.1.1)

When y = 3.02157 ,  the 2D figures for r =164  are drawn as follows. The left is normal scale and

the right is semilogarithmic scale.

 

Observing these shows that s r ,y is a variable periodic function with respect to r . However, the right figure

looks like a fixed periodic function at first glance.

Amplitude  A

  The amplitude of this function is A =1 .

Period  P

  This function is a periodic function. The first period starts at 0  and ends at 2 ,  the second period starts

at 2  and ends at 4 ,  so

y log r0 = 0  , y log r1 = 2  , y log r2 = 4  ,   , y log rn = 2n  ,  
From these,

r0 = e0/y , r1 = e2/y , r2 = e4/y   ,     ,  rn = e2n/y   , 

Therefore, the function s r ,y is separated into the following unit intervals.

e 0/y ,  e 2/y    ,  e 2/y ,  e 4/y   ,     ,  e( )2n-2 /y ,  e 2n/y    , 

Each of these has one mountain and one valley. We will call these the 1 st period, the 2 nd period,  .   i.e.

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above,  the 1 st and the 2 nd periods of s r ,y  are

P 1 ,3.02157  = 1 ,  8  , P 2 ,3.02157  = 8 ,  64
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Wavelength  
  The wavelength are the length of these periods.  That is,

e 0/y e 2/y -1   ,  e 2/y e 2/y -1   ,     ,  e( )2n-2 /y e 2/y -1   , 

The wavelength is e 2/y
 times longer than the previous period in each period.  So, this function is a variable

periodic function.  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1

In the figure above,  the wavelengths of the 1 st and the 2 nd periods of s r ,y  are

 1 ,3.02157  = 7 ,  2 ,3.02157  = 56

  When n =1 ,  y  can be back calculated from  .

y = 
log +1

2

From this,

When ( )1, y =7 , y = 
log 8
2

 = 3.02157

When ( )1, y =1 , y = 
log 2
2

 = 9.06472

When ( )1, y =0.559743 , y = 
log 1.559743

2
 = 14.1347

  A 3D view of  n ,y at n  1 is shown on the left. And the contour plots at =0.5 , =1.0 , =2.0
are shown on the right.

 

From these figures, we can see that the slope of the  n ,y contour decreases as n increases.  because,

n

 ( )n ,y  = 
y

2 
e( )2n-2 /y e 2/y -1  > 0 for  n ,y > 0

Using this contour plot, we can find the n ,y  pair that gives the desired  .

Mountain  Ms

  Since s r,y is a sine function, the mountain is at 1/4  of the period  plotted on a semilogarithmic scale.

Ms( )n ,y  = e 2y

 4n-3 
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In the figure above,  the mountains of the 1 st and the 2 nd periods of s r ,y  are

Ms 1 ,3.02157  = 1.68179   , Ms 2 ,3.02157  = 13.4544

Valley  Vs

  Since s r,y is a sine function, the vallay is at 3/4  of the period  plotted on a semilogarithmic scale.

Vs( )n ,y  = e 2y

 4n-1 

In the figure above,  the valleys of the 1 st and the 2 nd periods of s r ,y  are

Vs 1 ,3.02157 = 4.756843   , Vs 2 ,3.02157 = 38.0548

Zeros  Zs

  Since s r,y is the sine function, the zeros are at the left edge and middle of the period  plotted on a semi-

logarithmic scale.

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above,  the zeros of the 1 st and the 2 nd periods of s r ,y  are

Zs 1 ,3.02157  =  1 , 2.82843    ,   Zs 2 ,3.02157  =  8 , 22.6275

Near zeros  Xs

  When the variable r  of s r,y  is a discrete variable,  we will call  the integer r  within 0.5  from the

zero point  the neighborhood of the zero point.  That is,

Xs( )n ,y  =  Round e y

 2n-2 

 , Round e y

 2n-1 

In the figure above,

Xs 1 ,3.02157 =  1 ,3     ,    Xs 2 ,3.02157 =  8 , 23

Riemann Zeta type Sine Series ( when y = 14.1347  )

  Let us consider the following Riemann Zeta type sine series.

v( )y  = Σ
r=1



sin ( )y log r (3.1.2)

This is a series whose terms are s r ,y  (3.1.1).  For example,  when y =14.1347 , r =1,2, ,34  

and r =35,36, ,132  are drawn in succession,  it is as follows.
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The function value of  (3.1.2)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from

the integral value of (3.1.1). On the other hand, in the right figure this sum is close to the integral value of (3.1.1)

Divergence

  In the right figure, the area seems to be zero due to cancellation of plus and minus, but it is not.  Because,

the interval between waves expands and eventually becomes infinite.  So,  the series in  (3.1.2)  diverges.

3.2 sin(y log r)

  Let r,y  are positive numbers respectively, and consider the following function s r ,y .

s( )r, y  = ( )-1  r-1 sin ( )y log r (  is floor function ) (3.2.1)

When y = 3.02157 ,  the 2D figures for r =18  are drawn as follows. The left is normal scale and

the right is semilogarithmic scale.

 

Unlike the previous section, s r ,y  is a discontinuous function with respect to r . 

Amplitude  A
  The amplitude of this function is

A( )r  =  ( )-1  r-1  = 1

Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above, 

P 1 ,3.02157  = 1 ,  8

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7
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Mountain or Valley  MVs

  Unlike the previous section,  this function s r ,y  changes sign.  For this reason, mountains and valleys

exist at most twice as many as in the previous section.

MVs( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

The mountain or valley is determined by the sign of s r ,y  at r = MVs n ,y .

In the figure above, 

MVs 1 ,3.02157  =  1.68179, 4.75684

{s 1.68179 ,3.02157  , s 4.75684 ,3.02157 } =  1 ,1
So, both the former and the latter are mountains.

Zeros  Zs
  The zeros of this function are the same as in the previous section,  That is,

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above, 

Zs 1 ,3.02157  =  1 , 2.82843

Constriction  Xs

  Since this function s r ,y  changes sign,  the zero point looks like a constriction.  So, we will call  the 

integer r within 0.5  from the zero point  constriction.  That is,

Xs( )n ,y  =  Round e 2y

 2n-2 

 , Round e 2y

 2n-1 

In the figure above,

Xs 1 ,3.02157  =  1 ,3

Dirichlet Eta type Sine Series ( when y = 14.1347  )

  We consider the following Dirichlet Eta type sine series

v( )y  = Σ
r=1


( )-1 r-1sin ( )y log r (3.2.2)

This is a series whose terms are s r ,y  (3.2.1).  For example,  when y =14.1347 , r =1,2, ,34  

and r =35,36, ,105  are drawn in succession,  it is as follows.

 

The function value of  (3.2.2)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from
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the integral value of (3.2.1). On the other hand, in the right figure this sum is close to the integral value of (3.2.1)

Convergence ?

  The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions

seems to cancel out to zero.  As a trial, when y1=14.1347 ,  the area between each constriction in the

11 th and the 25 th periods are calculated as follows.

The 11 th period Xs 11 , y1  =  85 ,106    ,    11 , y1  = 47.7

v11 y1  = Σ
r=85

105

( )-1 r-1sin y1log r  = 0.00208785

The 25 th period Xs 25 , y1  =  42981 ,53679    ,    25 , y1  = 24058.2

v25 y1  = Σ
r=42981

53678

( )-1 r-1sin y1log r  =  -0.0000684506

Certainly,  the area between two constrictions approaches 0  as r  increases.

  To find out the cause of this,  let us compare the enlarged images near r =85  and r =42981 .

 

Then, at a glance, it can be seen that the scale of the vertical axis is an order of magnitude. Why? The reason

is simple. Because, the wavelength becomes longer as r  moves away from the origin. Since the amplitude is

1 , the longer the wavelength, the slower the slope of the variable-length sine curve.  However, even so, this

series v y is a divergent series. i.e. it just oscillates and never converges. So, if this series is truncated at

mountain or valley, there will be a maximum error of 0.5 . That is, this series (3.2.2)  oscillates within 0.5

Summation Method

  In such a case, the summation method says that an error of 0.5  should be regarded as 0  on average.

One of the simplest summation methods is the Euler transformation. The Euler transformation accelerates the

convergence of the series and also applies the summation method. If the Euler transform is applied to (3.2.2) ,

v( )y,m  = Σ
k=1

m

Σ
r=1

k

2k+1

1  
k

r
( )-1 r-1 sin ( )y log r (3.2.2' )

If this formula is used,  this series converges.

3.3 vc x,y

  Let r,x,y  are positive numbers respectively, and consider the following function s r,x ,y .

s( )r, x, y  = ( )-1  r-1

r

sinh ( )x log r
sin ( )y log r (  is floor function )     (3.3.1)
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When x = 1/4 , y = 3.02157 ,  the 2D figures for r =18  is drawn as follows.

Amplitude  A
  The amplitude of this function is

A( )r,x  =  ( )-1  r-1

r

sinh ( )x log r
 = 

r

sinh ( )x log r

(1) When 0 < x < 1/2 , lim
r

 sinh ( )x log r / r  = 0 . This is shown on the left.

(2) When x = 1/2 , lim
r

 sinh ( )x log r / r  = 1/2 .  This is shown on the right.

 

Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above, 

P 1 ,3.02157  = 1 ,  8

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7
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Mountain or Valley  MVs
  The mountains or valleys of this function are the same as in the previous section,  That is,

MVs( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

In the figure above, 

MVs 1 ,3.02157  =  1.68179, 4.75684

 s 1.68179 ,1/4 , 3.02157  , s 4.75684 ,1/4 , 3.02157

=  0.100499 ,0.183332
So, both the former and the latter are mountains.

Zeros  Zs
 The zeros of this function are the same as in the previous section,  That is,

Zs( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above, 

Zs 1 ,3.02157  =  1 , 2.82843

Constriction  Xs
 The constrictions of this function are the same as in the previous section,  That is,

Xs( )n ,y  =  Round e 2y

 2n-2 

, Round e 2y

 2n-1 

In the figure above, 

Xs 1 ,3.02157 =  1 ,3

Sine Series vc x,y  ( when x = 1/4 , y = 14.1347  )

 We consider the following sine series.

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r (2.4c)

This is a series whose terms are s r ,x ,y  (3.3.1) .   For example,  when x =1/4 , y=14.1347 ,

r =1,2, ,34  and r =35,36, ,105  are drawn in succession,  it is as follows.

The function value of  (2.4c)  is the sum of the areas of magenta.  In the left figure, this sum differs greatly from

the integral value of (3.3.1). On the other hand, in the right figure this sum is close to the integral value of (3.3.1)
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Convergence

  The last two constrictions in the right figure belong to the 11 th period. The area between two constrictions

seems to cancel out to zero.  As a trial, when x =1/4 , y1=14.1347 ,   the area between each

constriction in the 11 th and the 25 th periods are calculated as follows.

The 11 th period Xs 11 , y1  =  85 ,106    ,    11 , y1  = 47.7

v11 4
1

 , y1  = Σ
r=85

105

( )-1 r-1

r

sinh y1log r
sin y1log r  = -0.0000708924

The 25 th period Xs 25 , y1  =  42981 ,53679    ,    25 , y1  = 24058.2

v25 4
1

 , y1  = Σ
r=42981

53678

( )-1 r-1

r

sinh y1log r
sin y1log r  =  -0.00000233757

Comparing the two, the area between the two constrictions converges to 0  as r  increases.  The cause is

clear. Even when the amplitude is 1 , the area between constrictions decreases as r  increases. In addition,

the amplitude approaches 0 .  Due to these synergistic effects,  the area between the constrictions has to

approach 0  even more.  However,  since the amplitude does not approach 0 at x  1/2 ,  the summation

method is needed for convergence.

3.4 Amplitude of vc x,y  with respect to y

  The sine function and series dealt with in  3.3  were as follows.

s( )r, x, y  = ( )-1  r-1

r

sinh ( )x log r
sin ( )y log r (  is floor function )     (3.3.1)

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r     (2.4c)

=  
2
1
 Im  2

1
 x - i y + Im  2

1
+ x + i y     (2.4c' )

In this section,  we  explore the amplitude (mountain, valley) of  (2.4c)  with respect to y  using  (3.3.1) . 

To ensure accuracy, calculation and drawing are performed by  (2.4c' ) .

  Given x , vc x ,y  is a variable periodic function with respect to y . For example,  when x =1/4 ,

the 2D figures at y =108113  and y =501506  are drawn as follows.

 

Although the value of y  is larger in the right figure than in the left figure, it cannot be said that the mountains

in the right are higher than those in the left, or that the valleys in the right are deeper than those in the left.
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However, it can be said that the highest mountain in the right figure is higher than the highest one in the left

figure, and the deepest valley in the right figure is deeper than the deepest one in the left figure.  That is,  we

can say that the amplitude in the right figure is generally larger than one in the left figure.  Below, this will be

illustrated graphically.

3.4.1 Mountain of vc( )1/4, y   ( near y= 108.4 )

  At y =108113 , the mountain near here is the highest.  Accurate calculation of the mountain near here

by  ( 2.4c' )  is as follows.

Drawing s r ,1/4 , yM  by (3.3.1) is as follows. The horizontal axis is r . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 1.929  of  (2.4c)

 

Looking at this figure, it can be seen that there are 2  intervals with consecutive positive terms,  which

contribute to the height of the mountain.

(1) An enlarged view near 2/1  wavelength is drawn as follows.

r = 29  41  are positive for 13  consecutive terms. Calculating the constriction that seems to be

around here by trial and error,

Then, r = 29  41  are included in the 5965 th period.  The wavelengths of these periods are

That is, the wavelengths of r = 29  41  are 1.72  2.44
Here after, only the calculation results are described.
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(2) An enlarged view near 2/3( )=0.67  wavelength is drawn as follows.

r = 10  14  are positive for 5  consecutive terms.

These are included in the 4246 th period and  the wavelengths of the periods are 0.64  0.81 .

3.4.2 Mountain of vc( )1/4, y   ( near y= 503.8 )

  At y =501506 , the mountain near here is the highest.  Accurate calculation of the mountain near here

by  ( 2.4c' )  is as follows.

Drawing s r ,1/4 , yM  by (3.3.1)  is as follows. The horizontal axis is r . Cyan is drawn as a continuous

variable and magenta as a discrete variable. The sum of the area of magenta becoms mountain 5.198  of (2.4c)

 

Looking at this figure, it can be seen that there are 5  intervals with consecutive positive terms,  which

contribute to the height of the mountain.

(1) An enlarged view near 2/1  wavelength is drawn as follows.

r = 145  177  are positive for 33  consecutive terms. This interval is 2.54  times one of  3.4.1 (1) 

These are included in the 400 416 th period and  the wavelengths of the periods are 1.82  2.22 .
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(2) An enlarged view near 2/3( )=0.67  wavelength is drawn as follows.

r = 49  58  are positive for 10  consecutive terms. This interval is 2  times one of  3.4.1 (2) .  

These are included in the 312 326 th period and  the wavelengths of the periods are 0.61 0.71 .

(3) An enlarged view near 2/5( )=0.4  wavelength is drawn as follows.

r = 30  35  are positive for 6  consecutive terms. This interval is absent in  3.4.1 .  

These are included in the 272 285 th period and  the wavelengths of the periods are 0.37 0.43 .

(4) An enlarged view near 2/7( )=0.29  wavelength is drawn as follows.

r = 21  25  are positive for 5  consecutive terms. This interval is absent in  3.4.1 .  

These are included in the 246 257 th period and  the wavelengths of the periods are 0.27 0.31 .

(5) An enlarged view near 2/152/29 ( )0.070.13  wavelength is drawn as follows.
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r = 5  11  are positive for 7  consecutive terms. This interval is absent in  3.4.1 .  

These are included in the 137 190 th period and  the wavelengths of the periods are 0.07 0.13 .

3.4.3 Height of mountains near y =503.8  and y =108.4

  The mountain near y =503.8  is higher than the one near y =108.4 . because,

(1) The former is about 22.5  times longer than the latter in the interval with consective positive terms near

     wavelength 2/1 , 2/3 .

(2) The intervals with consective positive terms near wavelength 2/52/29  are added to the former.

  The reason for (1) lies in the definition of wavelength.  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1

 When the near of  =2  is 0.3 , the contour plots of  n ,y =1.7  and  n ,y =2.3  are  drawn

    as follows. The vertical axis is y  and the horizontal axis is the period number n 

The allowable range for the wavelength   near y =108.4  is the lower left black horizontal line, and the one

for the   near y =503.8  is the upper right black horizontal line. Then, we can see that the allowable range

near y =503.8  is wider than one near y =108.4 . This is because the slope y/n  of the contour decreases

as the wavelength   increases. This is the same for  =2/3 , 2/5 ,   as well. Thus the number of con-

secutive positive terms near y =503.8  is greater than that near y =108.4 . The above is the reason for (1) .
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  The reason for (2)  is the same. The contours for  =2/1 , 2/3 , 2/5 , 2/15 , 2/29  are as follows.

Since the minimum value of the period number that gives these values near y =108.4  is 42  ( 3.4.1 (2)  ) , 

the horizontal axis is drawn with n  42 .

Now, draw a horizontal line with a height of 113  with a dashed line.  Since near y =108.4  is y =108

113 ,  it is below this chain line,  and  =2/5 , 2/15 , 2/29  cannot exist here. The reason is that for a

given period number n , the contours shift upwards as the wavelength   decreases. Thus, if y  increases,

k  in  42,y =2/ 2k -1  also increases. The above is the reason for (2) .

3.4.4 Depth of Valleys near y =503  and y =109.4

  The valley near y =503 is deeper than the one near y =109.4 . Because, 3.4.1  3.4.3 also hold for valley.

  From 3.4.3 and 3.4.4 , we conclude that the amplitude at y =501506  is greater than that at y =108

113 . This can be described more generally as follows.

Law 3.4.5

  Let x ,y  are real numbers and function vc x ,y be as follows.

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r (2.4c)

Then,  given x ,  the amplitude of vc x ,y  is generally proportional to the absolute value of y .
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Note

  It is clear that this does not hold as a theorem. This is because there are quite a few exceptions. Nevertheless

Law 3.4.5  holds. Because, it is due to the change in slope y/n  of the contour line of  wavelength   and the

shift of the contour line, as described above.

 This law is similar to Bergmann's Law ( Bears in high latitudes are generally larger than bears in low latitudes.).

3.5 Shape and Properties of vc x,y

   From (2.4c) , we find that vc x , y  is an odd function with respect to both x  and y .

This shows that vc x , y  is point symmetric with respect to both both x  and y .

  Next,  when -1/2  x  1/2 ,  the 3D view of vc x ,y  at y =100107  and y =30003007 are

drawn respectively as follows.

 

In both figures, the upper part looks like   and the lower part looks like  . Then, we can see that both 
and   generally have larger curvatures in the right figure than in the left figure. This is because mountains and

valleys are steeper in the right figure than in the left figure according to  Law 3.4.5 . In addition, the right figure

has more mountains and valleys than the left figure (about twice as many),  but the reason for this is unknown.

3.6 Contour line of vc x,y  with height 1

  The height 1  contours of the two 3D views of vc x ,y  in the previous section are drawn as follows.

- 22 -



The left figure is y =100107  and the right figure is y =30003007 .

 

In both figures, the contour line looks like   &  . Then, we can see that both   &   are generally closer

to the y-axis in the right figure than in the left figure. This is because mountains and valleys are generally steeper

in the right figure than in the left figure according to  Law 3.4.5 . Therefore, as  y increases,  the tips  
of the contour approach the y -axis from both sides.
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4 Amplitude of us x,y  with respect to y

  Among the equations in  Proposition 2.4 , us x , y  was as follows.

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r (2.4s)

In this chapter, we consider the amplitude of this function with respect to y

4.1 cos (y log r)

  Let r,y  are positive numbers respectively, and consider the following function c r ,y .

c( )r, y  = cos( )y log r (4.1.1)

When y = 3.02157 ,  the 2D figures for r =164  are drawn as follows. The left is normal scale and

the right is semilogarithmic scale.

 

Observing these shows that c r ,y is a variable periodic function with respect to r . However, the right figure

looks like a fixed periodic function at first glance.

Amplitude  A

  The amplitude of this function is A =1 .

Period  P

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above,  the 1 st and the 2 nd periods of s r ,y  are

P 1 ,3.02157  = 1 ,  8  , P 2 ,3.02157  = 8 ,  64

Wavelength  

( )n ,y  = e( )2n-2 /y e 2/y -1

In the figure above,  the wavelengths of the 1 st and the 2 nd periods of c r ,y  are

 1 ,3.02157  = 7 ,  2 ,3.02157  = 56

Mountain  Mc
  Since c r,y is a cosine function, there are half mountains at both ends of the period, but the tip is adopted.

Mc( )n ,y  = e 2n-2 /y

In the figure above,  the mountains of the 1 st and the 2 nd periods of c r ,y  are
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Mc 1 ,3.02157  = 1   , c 2 ,3.02157  = 8

Valley  Vc

  Since c r,y is a cosine function, there is a valley in the middle of the period plotted on a semi-logarithmic

scale

Vc( )n ,y  = e 2n-1 /y

In the figure above,  the valleys of the 1 st and the 2 nd periods of c r ,y  are

Vc 1 ,3.02157 = 2.82843   , Vc 2 ,3.02157 = 22.6275

Zeros  Zc

  Since c r,y is the cosine function, the zeros are at 1/4  and 3/4  of the period  plotted on a semi-

logarithmic scale.

Zc( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

In the figure above,  the zeros of the 1 st and the 2 nd periods of c r ,y  are

Zc 1 ,3.02157  =  1.68179 , 4.75684

Zc 2 ,3.02157  =  13.4544 , 38.0548

Near zeros  Xc

  When the variable r  of c r,y  is a discrete variable,  we will call  the integer r  within 0.5  from the

zero point  the neighborhood of the zero point.  That is,

Xc( )n ,y  =  Round e 2y

 4n-3 

 , Round e 2y

 4n-1 

In the figure above,

Xc 1 ,3.02157 =  2 ,5     ,    Xc 2 ,3.02157 =  13 , 38

Riemann Zeta type Cosine Series ( when y = 14.1347  )

  Let us consider the following Riemann Zeta type cosine series.

u( )y  = Σ
r=1



cos( )y log r (4.1.2)

This is a series whose terms are c r ,y  (4.1.1).  For example,  when y =14.1347 ,  r =1,2, ,49

c r ,y  is drawn as follows.

- 25 -



The sum of the areas of cyan is the function value of  (4.1.2) .

This series diverges, and the summation method only leads to an asymptotic expansion.

4.2 cos (y log r)

  Let r,y  are positive numbers respectively, and consider the following function c r ,y .

c( )r, y  = ( )-1  r-1 cos( )y log r (  is floor function ) (4.2.1)

When y = 3.02157 ,  the 2D figures for r =18  are drawn as follows. The left is normal scale and

the right is semilogarithmic scale.

 

Unlike the previous section, c r ,y  is a discontinuous function with respect to r . 

Amplitude  A
  The amplitude of this function is

A( )r  =  ( )-1  r-1  = 1

Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above, 

P 1 ,3.02157  = 1 ,  8

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7

Mountain or Valley  MVc

  Unlike the previous section,  this function c r ,y  changes sign.  For this reason, mountains and valleys

exist at most twice as many as in the previous section.

MVc( )n ,y  =  e y

 2n-2 

, e y

 2n-1 
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The mountain or valley is determined by the sign of c r ,y  at r = MVc n ,y .

In the figure above, 

MVc 1 ,3.02157  =  1, 2.8284

{c 1 ,3.02157  , c 2.8284 ,3.02157 } =  1 ,1
So, both the former and the latter are mountains.

Zeros  Zc
  The zeros of this function are the same as in the previous section,  That is,

Zc( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

In the figure above, 

Zc 1 ,3.02157  =  1.68179 , 4.75684

Constriction  Xc

  Since this function c r ,y  changes sign,  the zero point looks like a constriction.  So, we will call  the 

integer r within 0.5  from the zero point  constriction.  That is,

Xc( )n ,y  =  Round e 2y

 4n-3 

 , Round e 2y

 4n-1 

In the figure above,

Xc 1 ,3.02157 =  2 ,5

Dirichlet Eta type Cosine Series ( when y = 14.1347  )

  Let us consider the following Dirichlet Eta type cosine function.

u( )y  = Σ
r=1


( )-1 r-1cos( )y log r (4.2.2)

This is a series whose terms are c r ,y  (4.2.1).  For example,  when y =14.1347 ,  r =1,2, ,38
c r ,y  is drawn as follows.

The sum of the areas of cyan is the function value of  (4.2.2) .

This series diverges, but converges if the summation method is applied. .

4.3 us x,y

  Let r ,x,y  are positive numbers respectively, and consider the following function c r ,x ,y .
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c( )r, x, y  = ( )-1  r-1

r

sinh ( )x log r
cos( )y log r (  is floor function )   (4.3.1)

When x = 1/4 , y = 3.02157 ,  the 2D figures for r =18  is drawn as follows.

Amplitude  A
  The amplitude of this function is

A( )r,x  =  ( )-1  r-1

r

sinh ( )x log r
 = 

r

sinh ( )x log r

(1) When 0 < x < 1/2 ,  0  A r,x  < 1/2   for  r =2,3,4,.

(2) When x = 1/2 ,  lim
r

 sinh ( )x log r / r  = 1/2 .

Period  P
  The period of this function is the same as in the previous section,  That is,

P( )n ,y  = e( )2n-2 /y ,  e 2n/y

In the figure above, 

P 1 ,3.02157  = 1 ,  8

Wavelength  
  The wavelength of this function is the same as in the previous section,  That is,

( )n ,y  = e( )2n-2 /y e 2/y -1
In the figure above, 

 1 ,3.02157  = 7

Mountain or Valley  MVc
  The position of mountains or valleys in this function is slightly different from the previous section. That is,

MVc( )n ,y  =  e y

 2n-2 

, e y

 2n-1 

In the figure above, 

MVc 1 ,3.02157  =  1, 2.8284

 c 1 ,
4
1

 , 3.02157  , c 2.8284 ,
4
1

 , 3.02157  =  0 ,0.156302

Let 0  be not a mountain, and only positive number be mountain. This is an exception for the first period only.
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Zeros  Zc
  The zeros of this function are the same as in the previous section,  That is,

Zc( )n ,y  =  e 2y

 4n-3 

 , e 2y

 4n-1 

In the figure above, 

Zc 1 ,3.02157  =  1.68179 , 4.75684

Constriction  Xc
  The constrictions of this function are the same as in the previous section,  That is,

Xc( )n ,y  =  Round e 2y

 4n-3 

 , Round e 2y

 4n-1 

In the figure above, 

Xc 1 ,3.02157 =  2 ,5

Coine Series us x,y  ( when x = 1/4 , y = 14.1347  )
  We consider the following sine series.

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r (2.4s)

This is a series whose terms are c r ,x ,y  (4.3.1) . For example,  when x =1/4  ,  y=14.1347  and

r =1,2, ,38 ,  c r ,y  is drawn as follows.

The sum of the areas of cyan is the function value of  (2.4s) . When 0 < x < 1/2 ,  this series converges .

When x  1/2 ,  this converges by applying the summation method.

4.4 Amplitude of us x,y  with respect to y

  The cosine function and series dealt with in  4.3  were as follows.

c( )r, x, y  = ( )-1  r-1

r

sinh ( )x log r
cos( )y log r (  is floor function )   (4.3.1)

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r   (2.4s)

=  
2
1
 Re  2

1
 x - i y - Re  2

1
+ x + i y   (2.4s' )

In this section,  we  explore the amplitude (mountain, valley) of  (2.4s)  with respect to y using  (4.3.1) . 

To ensure accuracy, calculation and drawing are performed by  (2.4s' ) .
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  Given x , us x ,y  is a variable periodic function with respect to y . For example,  when x =1/4 ,

the 2D figures at y =108113  and y =501506  are drawn as follows.

 

Although the value of y  is larger in the right figure than in the left figure, it cannot be said that the valleys in

the right are deeper than those in the left, or that the mountains in the right are heigher than those in the left.

However, it can be said that the deepest valley in the right figure is deeper than the deepest one in the left

figure, and the highest mountain in the right figure is higher than the highest one in the left figure. Below, this

will be illustrated graphically.

4.4.1 Valley of us( )1/4, y   ( near y= 108.9 )

  At y =108113 ,  the valley near here is the deepest.  Accurate calculation of the valley near here by

( 2.4s' )  is as follows.

Drawing c r ,1/4 , yv  by  (4.3.1)  is as follows. The horizontal axis is r . Orange is drawn as a continuous

variable and cyan as a discrete variable. The sum of the area of cyan becoms valley -2.255  of  (2.4s) .

 

Looking at this figure, it can be seen that there are 3  intervals with consecutive negative terms,  which

contribute to the depth of the valley.

(1) An enlarged view near 2/1  wavelength is drawn as follows.
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r = 29  42  are negative for 14  consecutive terms. Calculating the constriction that seems to be

around here by trial and error,

Then, r = 29  42  are included in the 59 65 th period.  The wavelengths of these periods are

That is, the wavelengths of r = 29  42  are 1.69  2.39
Here after, only the calculation results are described.

(2) An enlarged view near 2/3( )=0.67  wavelength is drawn as follows.

r = 10  13  are negative for 4  consecutive terms.

These are included in the 41 45 th period and  the wavelengths of the periods are 0.63  0.71 .

(3) An enlarged view near 2/5( )=0.4  wavelength is drawn as follows.

r = 6  8  are negative for 3  consecutive terms.

These are included in the 33 36 th period and  the wavelengths of the periods are 0.38  0.42 .

4.4.2 Valley of us( )1/4, y   ( near y= 504.1 )

  At y =501506 ,  the valley near here is the deepest.  Accurate calculation of the valley near here by

( 2.4s' )  is as follows.
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Drawing c r ,1/4 , yv  by  (4.3.1)  is as follows. The horizontal axis is r . Orange is drawn as a continuous

variable and cyan as a discrete variable. The sum of the area of cyan becoms valley -3.655  of  (2.4s) .

Looking at this figure, it can be seen that there are 4  intervals with consecutive negative terms,  which

contribute to the depth of the valley.

(1) An enlarged view near 2/1  wavelength is drawn as follows.

r = 144  178  are negative for 35  consecutive terms. This interval is 2.5  times one of  4.4.1 (1) .  

These are included in the 399 416 th period and  the wavelengths of the periods are 1.79  2.21 .

(2) An enlarged view near 2/3( )=0.67  wavelength is drawn as follows.

r = 49  58  are negative for 10  consecutive terms. This interval is 2.5  times one of  4.4.1 (2) .  

These are included in the 312 326 th period and  the wavelengths of the periods are 0.60  0.71 .

(3) An enlarged view near 2/5( )=0.40  wavelength is drawn as follows.
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r = 30  35  are negative for 6  consecutive terms. This interval is 2  times one of  4.4.1 (3) .  

These are included in the 272 285 th period and  the wavelengths of the periods are 0.37  0.43 .

(4) An enlarged view near 2/7( )=0.294  wavelength is drawn as follows.

r = 21  25  are negative for 5  consecutive terms.  This interval is absent in  4.4.1 .  

These are included in the 246 257 th period and  the wavelengths of the periods are 0.27  0.30 .

4.4.3 Depth of Valleys near y =504.1  and y =108.9

  The valley near y =504.1 is deeper than the one near y =108.9 . Because,

(1) The former is 22.5 times longer than the latter in the interval with consective negative terms near

     wavelength 2/1 , 2/3 , 2/5 .

(2) The interval with consective negative terms near wavelength 2/7  is added to the former.

These causes are as seen in  3.4.3 .

4.4.4 Height of mountains near y =503.4  and y =109.9

  The mountain near y =503.4  is higher than the one near y =109.9 . because, 4.4.1  4.4.3 also hold for
mountain.

  From 4.4.3 and 4.4.4 , we conclude that the amplitude at y =501506  is greater than that at y =108
113 . This can be described more generally as follows.

Law 4.4.5

  Let x ,y  are real numbers and function us x ,y be as follows.

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r (2.4s)

Then,  given x ,  the amplitude of us x ,y  is generally proportional to the absolute value of y .

Note

  This does not hold as a theorem, but holds as a law.  Because, it depends on the change of the slope y/n

of the contour line at wavelength   and  the shift of the contour line. This law is similar to Bergmann's Law 

( Bears in high latitudes are generally larger than bears in low latitudes.).

4.5 Shape and Properties of us x,y

  From  (2.4s) , us x , y  is an odd function with respect to x  and an even function with respect to y . This

shows that us x , y  is point symmetric with respect to x  and line symmetric with respect to y .
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  Next,  when -1/2  x  1/2 ,  the 3D view of us x ,y  at y =100107  and y =30003007  are

drawn respectively as follows.

 

In both figures, the upper part looks like   and the lower part looks like  . Then, we can see that both 
and   generally have larger curvatures in the right figure than in the left figure. This is because mountains and

valleys are steeper in the right figure than in the left figure according to  Law 4.4.5 .  In addition, the right figure

has more mountains and valleys than the left figure (about twice as many),  but the reason for this is unknown.

4.6 Contour line of vc x,y  with height 1

  The height 1  contours of the two 3D views of us x ,y  in the previous section are drawn as follows.
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The left figure is y =100107  and the right figure is y =30003007 .

In both figures, the contour line looks like   &  . Then, we can see that both   &   are generally closer

to the y-axis in the right figure than in the left figure. This is because mountains and valleys are generally steeper

in the right figure than in the left figure according to  Law 4.4.5 . Therefore, as  y increases,  the tips  
of the contour approach the y -axis from both sides.
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5 Contour Lines of vc x,y  , us x,y  and the Transitions

5.1 Contour Lines of vc x,y  , us x,y

  The functions vc x ,y  , us x ,y  of  Propositions 2.4  were as follows, respectively.

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r (2.4c)

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r (2.4s)

5.1.1 Contour line of vc x,y  with height 8

  Contour plots of vc x ,y at height 8  are as follows. The left figure is 8  and the right figure is -8  .

Since vc x ,y  is an odd function with respect to both x  and y ,  the left and right figures have a mirror

image relationship with respect to both the y -axis and the x -axis.

5.1.2 Contour line of us x,y  with height 8

  Contour plots of us x ,y at height 8  are as follows. The left figure is 8  and the right figure is -8  .

Since us x ,y  is an odd function with respect to x  the left and right figures have a mirror image relationship

with respect to the y -axis
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5.1.3 Contour lines of vc x,y  , us x,y  with height 8

  When  5.1.1  and  5.1.2  are overlapped,  it becomes as follows.

Since vc x ,y ,us x ,y  are odd functions with respect to x  the left and right figures have a mirror image

relationship with respect to the y -axis. Both figures never overlap by translation or rotation in the plane.

5.2 Transitions of contour lines of vc x,y  , us x,y

  Nevertheless, at height 0 ,  the left and right figures have to overlap with no translation or rotation.  For the

purpose,  the contour lines in both figures have to be deformed as the height approaches 0  from above and

below. And, at height 0 , both figures must be symmetrical about both the y -axis and the x -axis.

  This forces contour lines that were alternate at height 0  to be opposite at height 0 . This also applies to

the x -axis. Thus, At height 0 , the right and left edges of     must be absorbed into the y -axis,  and

the lower and upper edges of     must be absorbed into the x -axis.

  In fact, when the height is changed to 20.15 , 20.15 , 2-0.89 , 2-1.4 , 2-5
,  the above figures are

deformed as follows.
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For the animation from vc = us = 1  to vc = us = 0 ,  click here.  AnimZ5219.gif 

  Consistent with the theory, the contour parts asymmetric with respect to the y and x -axis  were absorbed

in both axes. As the result,

(1) Trivial solutions  8.69593 , 0  ,  10.4734 , 0  ,   (blue point) of vc = us = 0  arose

     countless on the x -axis.  However, they do not satisfy uc = 0

(2) Non-trivial solutions  6.01956 , 1.19483  (red point) of vc = us = 0  remained. However, they

     are not in the critical strip,  and do not satisfy vs = uc = 0 .

(3) All solutions ( intersections of vc  & us  )  except (1) and (2)  moved on the y -axis.

  The figures above are for  y  15 ,  but what about when  y is large ?  As an example, drawing contour

lines of height 8  of vc  & us  for y =015  and y =100115  is as follows.  The left figure is 015

and the right figure is 100115
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It is observed that both   and   are generally closer to the y -axis in the right figure than in the left figure.

As stated in the previous two chapters,  this is due to Law 3.4.5  and Law 4.4.5 ..

  Both figures show that the above phenomenon (3) becomes more pronounced where  y  is large. That is,

The above (3) occurs in the whole domain y > 1.19483  .

  So, the system of equations vc x ,y  = us x ,y  = 0  has no solution in the critical strip -1/2 < x < 1/2

except on the critical line x =0 .

Note

  x =0  is equivalent to the absence of vc  and us .
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6 Proof of the Riemann Hypothesis

  In this chapter, we will prove the Riemann hypothesis by organizing and summarizing  the above.

Proposition 6.1 ( Riemann Hypothesis )

  Let  z  be the function defined by the following Dirichlet series.

( )z  = Σ
r=1



e-z log r = 
1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re z  > 1 (1.)

This function has no non-trivial zeros except on the critical line Re z =1/2 .

Proof

  Dirichlet Eta Function  z  is defined by the following Dirichlet series.

( )z  = Σ
r=1


( )-1 r-1e-z log r = 

1z

1
-

2z

1
+

3z

1
-

4z

1
+-  Re z  > 0 (1. )

This function is analytically continued to Re z   0 ,  and has the following relation to  z .

( )z  = 
1-21-z

1
( )z z1

Therefore, the non-trivial zeros of  z and  z  coincide in the critical strip 0 < Re z  < 1 .

  First, by functional equation, the solution for  z  = 0  is consistent with the solution of the following 

system of equations. ( Lemma 2.1 )


 z   = Σ

r=1


( )-1 r-1 e-z log r   = 0

 1-z  = Σ
r=1


( )-1 r-1 e- 1-z  log r = 0

0 < Re z  < 1

 Second, by translation,  the solution for  1/2 z  = 0  is consistent with the solution of the following

system of equations. ( Lemma 2.1 ' )


 2

1
+z  = Σ

r=1



r

( )-1 r-1

e-z log r = 0

 2
1

-z  = Σ
r=1



r

( )-1 r-1

ez log r = 0

-
2
1

 < Re z  < 
2
1

Third, by addition and subtraction,  the solution for  1/2  z  = 0  is consistent with the solution of the

following system of equations. ( Lemma 2.2 )


c( )z  = Σ

r=1



r

( )-1 r-1

cosh( )zlog r  = 0

s( )z  = Σ
r=1



r

( )-1 r-1

sinh( )zlog r  = 0

-
2
1

 < Re z  < 
2
1

Last, expressing these by real and imaginary parts, we obtain the following theorem.

Theorem 2.3 (reprint)

  When the set of real numbers is R  and Dirichlet eta function is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution
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on the domain.

uc( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  cos( )ylog r  = 0

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0

vs( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  sin( )ylog r  = 0

  According to this theorem, if a system of equations consisting of any two of these equations does not have a

solution in the critical strip except on the critical line,  the Riemann hypothesis holds. Therefore,  the following

proposition equivalent to the Riemann hypothesis can be presented.

Proposition 2.4 (reprint)

  When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations

has no solution such that x 0 .


vc( )x,y  =  Σ

r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0     (2.4c )

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0     (2.4s )

  From 3.1 to 5.2, as evidenced mainly by figures, this system of equations has only four non-trivial solutions

 6.01956 , 1.19483 .  In other words, this system of equations has no solution in the critical strip

 -1/2 < x < 1/2  except for the critical line  x =0 .

  Thus since Proposition 2.4 has been graphically proved,  according to Theorem 2.3 , the Riemann hypothesis

holds. Q.E.D.
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Appendix

  The 2  functions vc x ,y  , us x ,y  that are central to this paper are expressed by the following formulas

using the Dirichlet Eta function  x ,y .

vc( )x,y  =  
2
1
 Im  2

1
 x - i y + Im  2

1
+ x + i y (2.4c' )

us( )x,y  =  
2
1
 Re  2

1
 x - i y - Re  2

1
+ x + i y (2.4s' )

1 For  x,y

  The discussion in this paper is valid even if the functions in these formulas are replaced by the Riemann zeta

function  x ,y .  That is,

vc( )x,y  =  
2
1
 Im  2

1
 x - i y + Im  2

1
+ x + i y (.c' )

us( )x,y  =  
2
1
 Re  2

1
 x - i y - Re  2

1
+ x + i y (.s' )

Using these, the contour lines of vc x ,y  , us x ,y  at height 0  were drawn as follows.

  Blue points are the trivial solutions. These exist innumerably on the x -axis  as  18.5678 , 0  , 

 20.4924 , 0  ,  .

  Red points are non-trivial solutions of vc = us = 0 . They are 12 in 3 sets of  8.49059 , 4.51058  ,

 12.6627 , 2.58053  ,  15.9781 , 0.679408 . These exist near the boundary between

hyperbola and parabola, that is, around the origin. So, There are no non-trivial solutions other than these 12 .

Since these are outside the critical strip, the Riemann Hypothesis must hold.
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2 For   x,y

  The discussion in this paper is valid even if the functions in these formulas are replaced by the Dirichlet beta

function  x ,y .  That is,

vc( )x,y  =  
2
1
 Im  2

1
 x - i y + Im  2

1
+ x + i y ( .c' )

us( )x,y  =  
2
1
 Re  2

1
 x - i y - Re  2

1
+ x + i y ( .c' )

Where,

( )z  = Σ
r=1


( )-1 r-1e-z log 2r+1  = 

1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re z  > 0

Using these, the contour lines of vc x ,y  , us x ,y  at height 0  were drawn as follows.

  Blue points are the trivial solutions. These exist innumerably on the x -axis  as  3.970898 , 0  , 

 5.410623 , 0  ,  .

  There is no non-trivial solution for vc = us = 0  near the boundary between hyperbola and parabola. They do

not even exist around the y -axis. Therefore, the Riemann hypothesis also holds for the Dirichlet beta function.
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