29 Higher Derivative of Complex Function

Abstract
(1) Cauchy-Riemann equations can be generalized to the odd-order derivative of the 3rd or higher.

(2) Laplace's equations can be generalized to the even-order derivative of the 4th or higher.

(3) The higher derivative f(n)(Z) of a holomorphic function f(Z) ( Z=x+iy ) is represented by the higher

derivatives with respectto Y .

29.1 The 1~4th order Derivatives

Cauchy-Riemann equations and Laplace's equations were as follows respectively.

Theorem 29.1.1 ( Cauchy-Riemann equations )
f@)= u(Xx,y)+ i v(X,y) is holomorphic in the whole domain D ifand only if U,V are totally

differentiable in D and the following equations hold.

F) F)
- u(x,y) o v(x,y)

0 ___0
oy u(x,y) = o v(x,y)

Theorem 29.1.2 ( Laplace's equations )
When f(Z)z U(X,y)+ [ V(X,y) is holomorphic in the whole domain D  the following expressions hold.

2 2

) E)
—u(x,y) = -———u(x,
. (x,y) oy (x,y)
82 82

EV(X,V) - -WV(X,Y)

The 1st order derivative of f(z)
Cauchy-Riemann equations are often abbreviated as follows.
Uy =Vy , Vy = -Uy Cauchy-Riemann the 1st order equations (1.10)

From this,

1 . :
fP(z) =UHiv, = vy —iuy

The 2nd order derivative of f(2)

If (1.10) is differentiated with X, Uyy = Vyyx , Vyx = —Uyy (L.21)
If (1.10) is differentiated with Yy, Uyy = Viy , Vyy = —Uyy (L.22)
From these,

Uxx = —Uyy + Vxx= ~Vyy Laplace's the 2nd order equations (1.20)
From this,

f(z)(z) SUgtivy = -Uy —ivy



The 3rd order derivative of f(7)
Ifl(L.21)is differentiated with X, Uyyx = Vyxx 5 Vxxx = ~Uyxx
If (L.21) is differentiated with 'y, Uyxxy = Vyxy + Vixy = ~Uyxy
IflL.22)]is differentiated with X ,  Uyyy = Vyyyx , Vyyx = ~Uyyx
If (L.22) is differentiated with Y , nyy

Vyyy 1 Vyy = ~Uyyy
From these,

Uxxx = Vyxx + Vxxy = “Uyxy 5 Uxyy = Vyyy : Uxxx = ~Vyyy

Vix = “Uyxx 5 Uxyx = Vyyx 5 Viyy = Uy == Vix = Uyyy
Uxxy = Vyyx 5 Viy = “Uyyx
That is
Uxxx = ~Vyyy + Vixx = Uyyy Cauchy-Riemann the 3nd order equations
Uxxy = Vyyx + Vxxy = “Uyyx Cauchy-Riemann the 3nd order equations
From (1.30) ,
f(3)(z) = Ugex 1 Vi = =Vyyy + 1 Uyyy

The 4th order derivative of f(z)

If (C.31) is differentiated with X, Uyyux = Vyxxx » Vixx = ~Uyxxx
If (C.31) is differentiated with Y, Uyxxxy = Vyxxy + Vxxxy = ~Uyxxy
If (C.32) is differentiated with X, Uyxyx = Vyxyx s Vxxyx = ~Uyxyx
If (C.32) is differentiated with Y, Uyyyy = Vyxyy + Vxxyy = ~Uyxyy
If (C.34) is differentiated with X, Uyyyx = Vyyyx 5 Vxyyx = ~Uyyyx
If (C.34) is differentiated with Y, Uyyyy = Vyyyy 5 Vxyyy = “Uyyyy

Note that the derivatives of (C33) are excluded because they overlap with those of (C32) .
From these,

Uxxxx = Vyxxx ) Vxxxy uyxxy ) uxxyy - Vyxyy ) nyyy uyyyy

Vixxx = “Uyxxx s Uxxxy = Vyxxy 5 Vxyyx = “Uyyyx + Uxyyy = Vyyyy

uxxyx Vyxyx ’ Vxxyy uyxyy ’ Vxxyx quyX ) uxyyx Vyyyx

(C.31)
(C.32)
(C.33)
(C.34)

(1.30)

Usoxxx = Uyyyy

VXXXX

> Uxxxy = “Uyyyx + Vaxxy =

That is
Uxxxx = Uyyyy — + Vixx = Vyyyy Laplace's the 4th order equations
Uxxxy = ~Uyyyx 1 Vxxxy = ~Vyyyx Laplace's the 4th order equations
From (1.40) ,

4 . .
¢ )(z) = Uy 1 Vg = Upyyy Vi

If the aboves are wrote together, it is as follows.

Vyyyy

~Vyyyx

(1.40)



The 1~4th order derivatives of f(7)

f(l)(z) = U, +iv, = vy —iu
f(z)(z) SUgtivy = -Uy —ivy
f(s)(z) S Ut 1 Vix = =V + 1 Uy
fP(z) = Ugoo F 1 Vg = Uyyyy 1 Vi

Thus, Cauchy-Riemann the 3nd order equations and Laplace's the 4th order equations were obtained.
However, It is difficult to calculate the 5th order and abowe in this way. Therefore, in the following sections,

we will consider another way.



29.2 Series Expression of Higher Derivative

As first, we reprint Formula 14.1.2 in " [14 Taylor Expansion by Real Part & Imaginary Part|' ( A la Carte ) .
And, we perform higher order differentiation of Taylor series by real and imaginary parts.

Formula 14.1.2 (Reprint)
Suppose that a complex function f(Z) (Z =X+i y) is expanded around a real number @ into a Taylor

series with real coefficients as follows.

@) = Zf(s)( )(Z a) @1)

Then, the following expressions hold for the real and imaginary parts u(x,y) ,v(x,y) . Where, OO =1.

¢-2) CD'y”

UGy = rgo sgof(zrﬂ)(a) s! @n)! (2.1u)
—_ v O f@ris+l) (X_a)s (_1)ry2r+l
ooy = 2 2 @ @D @19

Example
f(z) =(z-1)%%"?
u(x,y) = e {(1-2x+x?-y?)cosy - (2xy -2y )siny }
v(x,y) = e (1-2x+x%-y?)siny + (2xy -2y )cosy }
Expanding f(Z) to the Taylor series around 1 and applying the above formula,

(@ = $s6-D-5 > (Z 1)5

o NS 1\ y2r

o CANS (AN 2+
v(x,y) = ;O S;{)(2r+s+l)(2r+s) (XS !1) ((;?+)i)!

In fact, given 2+i to these functions and series, it is as follows.

N[{u[2, 1], u[2, 1, 3©]}] N[{v[2, 1], v[2, 1, 3@]}]
{-4.57471 , -4.57471} {2.93739, 2.93739}

29.2.1 Higher Derivative with respect to X

Formula 29.2.1
Suppose that a complex function f(Z) (Z =X+i y) is expanded around a real number @ into a Taylor

series with real coefficients as follows.

f@) = Zf(s)( )(Z a) @2.1)

Then, the N - th order derivative and the real part uxn( X,y ) & the imaginary part VXn( X,y ) are as follows.


http://fractional-calculus.com/taylor_expansion_real_imaginary_part.pdf

(D) = 3 1E(a) LA
s=0 st

SRS -2 (=1 2"
ux,x,y) = 2 2f(2r+s+n)(a) &-a)’ -D'y

r=0 =0 s! @n!
_ N\ §(2r+s+1+n) (x-a)’ ¢ )r s
V(oY) = X X @ @D

Where, o°=1.

Proof

Differentiating N - times with respect to Z ,

s-n s
& Z—a & Z—a
(O@) = 310(a) LB - $ g, €Y
s=n (S -n ) ! s=0 st
Applying to this, we obtain the desired expressions.

Example

f(z) =(z-1)%"t = Zs( -1 (Z 1)S

Differentiating the both sides N - times with respectto Z ,

M@ = Zs(s 1)((Z 1n))s'n go(s+n)(s 1+n) (Z_ )S
Applying m to this,

W, (x,y) = 3 3 (2r+s+n)(2r+s-1+n) &-D° Dy*

r=0 s=0 S ! (Zr) !
o N\ /_ r,,2r+l
v, (X,y) = ;O S;()(2r+s+1+n)(2r+s+n) (XS !1) ((er)+):’L)!

Given 2+3i to f(”)(z), ux, (X, y), vx,(X,y) , itis as follows.

f5[z2_] =98,08,8,0,08,f[z]; f6[z_]=0,08,8,0,08,8,f[2];

N[{f5[2+34] > UxXs[2, 3, 30], vxs[2, 3, 30]}]

{-73.0135 - 88.4395 1 -73.0135

J

, —88.4395)
N[{f6[2+34] > UXs[2, 3, 30], vxs[2, 3, 30]}]
{-107.608 - 99.98281 , -107.608 , —99.9828)

Note

f(n)(Z) = UXn(X,y) +i Vxn(xiy)



29.2.2 Higher Derivative with respect to y

Formula 29.2.2
Suppose that a complex function f(Z) (Z =X+i y) is expanded around a real number @ into a Taylor
series with real coefficients as follows.

@) = Zf(s)( )(Z a) @1)

Then, the N - th order derivatives of the real part U(X ,y) & the imaginary part V( x,y) with respect to Y
are as follows.

S S 1\ \2r-n
uyn(X,y) = 2 Zf (2r+s) ( ) (X a) ( ]_) y

r=0 s=0 s! (2r_n) 1 (2.2u)
© ® —2)s r,,2r+1-n
- f(2r+s+1) (X a) ( ) |
Where, 0°=1.

Proof

Differentiating the right sides of (2.1u) and (2.1v) N - times with respect to Z respectively, we obtain the
desired expressions.

Example

f(z) =(z-1)%*" = Z s(G-1) ~—~

The real and imaginary parts of this are

(z 1)5

o CANS (N 2r

u(x,y) = ;O S;o(zr+s)(2r+s—1) (XS !1) ((2)3;
e _IN\S _1\[l,,2r+1

v(x,y) = ;O S;{)(2r+s+l)(2r+s) (XS !1) ((;?3:/[)!

Differentiating these N - times with respectto Y ,

o CANS (1N 2r-n
(X_l)s (_1)ry2r+1—n
s (2r+1-n)!

Given 2-1 to the direct derivatives of |u (X,y),V(X,yj and uyn(x,y), vyn(x,y) , itis as follows.

Wa(,Y) = 2 §O<2r+s+1><zr+s>

uyS[x_, y_]1 =06,8,8,8,8,u[x, y]; Vy6[xX_,Yy_]1=8,8,8,8,8,8,V[X, V¥Y];

N[{Uy5 [2: —1]: UYS[z: —1: 39]}] N[‘[WG [2: —1]: Ws[za —1: 36]}]
{86,245, 86,245} {116.631, 116.631}

Note
fO@ = uyax,y) +ivy, &, y)



29.3 Cauchy-Riemann & Laplace Equations
In this section, using the Taylor series obtained in the previous section, we generalize Cauchy-Riemann equations
and Laplace's equations to the 3rd order and abowve. The advantage of this method is that the formula can be visually

confirmed.

Formula 29.3.1 ( Cauchy-Riemann higher order partial differential equations )

When a complex function f(Z): u(x,y)+ [ V(X,y) is holomorphic in the whole domain D ,
the following expressions hold

a2n—l a2n—1
o ty) = CDTGmxy) =123, B
a2n—l a2n—1
oy 21 vix.y) = D’ oy2" L u(x,y) n=1,23, (3.1)
Proof
From [Formula 29.2.1],
a” © o (X a) ( 1)!’ 2r
— (2r+s+n)
o UXY) Fwalay) = 2 A O N 5]
" (x-a)° (-D"y2™!
Q2r+s+1+n)
oY) Tval.y) = Z §f @7 @D
Replacing N with 2n =1 in both expressions,
2n-1 ro,2r
0 5 x-a)’ D'y
- (2 2n-1)
ox2"1 uix,y) = r=0 s;of R O s! @n! (uxt)
2n-1 S r.,2r+l
0 5 &-a)" D'y
—- (2r+s+2n)
ax2”-1v(x’y) - Zo s;of @ st Qr+D! (1)
On the other hand, from[Formula 29.2.2},
" o o . (X_a)s ( )r 2r-n
ay” u(x,y) = uyn@.y) = rgo sgof(2r S)(a) sl Cr-n)! (2.2u)
s Y 2r+1-n
= o Gy) = 3 3@ i) L& a) CL'y @29

r=0 5=0 s! Q@r+1-n)!
Replacmg N with 2n -1 in both expressions,

o ® . X -a 1 r 2r 2n+1
Uyzn-1 (.Y = r;o ;Of(zr Y@ . s!) ((Zr) 2n+1)1

f 2r+s) (a) (X a) ( 1)r ar-an+l
0 st @r-2n+D)!

_ o © (2r+s+1) (X a) ( 1)r 2r-2n+2
Wan-1Q0Y) = 2 2 @ T Groan

_ N N (@rstD) (X_a)s (-1)ry2r'2”+2
2,2 @ T Groan

MS

=3

_‘
=1
1l

S




(v 1/(2r-2n+1)1=0 forr<n , 1/(2r-2n+2)1=0 forr<n-1)
Replacing I' with r+n inand replacing I' with r+n -1 in [the Tatter|

0 @ e, X —a 1)+ 2r+l
o aG) = £ S EP CoT

(X a) (_1)r+n 1 2r

Wont (,Y) = X D@20 ()

5 (2r)!
ie.
o™ (rssran) gy KD DTy
r+s+2n
ayZn 1 (X y) - (_1) ; szof ° ( ) ! (2r+1)! (uy1)
82”-1 1 n-1 Z Q2r+s+2n-1) (X a) ( 1)|’ 2r
ayzn_1V( y)=CDHT 2 OSEOf @5 DY (1)
From (w1) and |(ux1)|,
2n-1 2n-1
0 _q O
ay2n—1V(X,Y) :(_1)n ! aXZn—lu(X,Y)
From (uy1) and | (vx1)|,
a2n—l _ ] a2n—1
ay2n_1u(x1y) - (_1) axzn‘l V(X1y)
Swapping these signs left and right, we obtain the desired expressions.
Example 1
f(z) = (z-1)%%"
ux,y) = e H{ (1-2x+x%-y?)cosy - (2xy -2y )siny }
v(x,y) =ex'1{(1—2x+x2—y2)siny + (2xy—2y)cosy}
Expanding these into Taylor series around 1,
7- 1 s
f@) = Zs(s DH—= ( )
RSN &x-1° D'y
ulx,y) = ;0 Sg()(2r+s)(2r+s—1) 51 b)Y
ae ( ) ( l)l’ 2r+1
v(x,y) = ;0 Sgo( r+s+1)(2r+s) 51 Qr i
Odd-order partial derivative of u(x,y) ,v(x,y) are
2n-1 S r,,2r
_ 0 RSN (x-1)* D'y
uxo,(x,y) = aXZn_lu(x,y) = ;O S;()(2r+s+2n 1)(2r+s+2n-2) <1 21
2n-1 2r+1
_ 0 EERSERS (x-1)°* D'y
vxo,(x,y) = aXZn_lv(x,y) = ;O s;O(Zr+s+2n)(2r+s+2n—1) <1 (2re1)1



2n-1

__0 _ NV A (X_l)s (_1)ry2r+1
uyo,(x,y) = ay2n_1u(x,y) =(-1) r;()Sg()(2r+s+2n)(2|r+s+2n_1) Sz A
-t LSS _1)S 1\ Ny 2r
vyon(x,y) = 62 V(x,y)=(—1)”‘1Z2(2r+s+2n-1)(2r+s+2n_2)(X 1°CEDY
ay n-1 r=0s=0

Given 2—1 to these for erification, it is as follows.
UXs [X_, y_] = 888U [X, y] ;
N[‘[UXB [2: _1] » UXOz [2: _1: 36] }]

1-0.674515, -0.674515)
uys [x_, ¥_] =8y,8,8,u[x, y];

N[‘[UYB [2: —1]: Uyoz[z: —1: 36]}]
[-39.1978, -39.1978)
Next,

uxo,(X,y) , vyon(x,y) =
vxo,(X,y) ,uyo,(Xx,y) =

(3.1u)

(3.1v)

st (2r)1

VX3 [X_, y_] =GB, V[X, Y]

N[ ‘[VXB [2: —1] E onz [2: —1: 36] } ]
{-39.1978, -39.1978)

Vy3 [X_, Y_] = ayayayv[x: vl;

N[‘[WB [2) —1]: Vyoz[z: —1: 36]}]
{0.674515, 0.674515)

Formula 29.3.2 ( Laplace's higher order partial differential equations )

When a complex function f(Z): u(x,y)+ [ V(X,y) is holomorphic in the whole domain D

the following expressions hold
2n

3 a2n
2n U(X,y) = (_1)n ay2l’] u(x1y) n:112131 (3.2U)
2n a2n
2n V(ny) = (_1)” ayzn V(X!y) n:112131 (3-2\/)
Proof
From [Fomua 2921]
0" 5 R x-a)° D'y*
- — (2r+s+n)
aXHU(x,y) Wa®,y) = 2 2 f @ @01
n S r.,2r+l
- - S g (2r+s+1+n) (X_a) (_1) y
aXHV(x,y) W (,y) = 2 Xf @ Grinl
Replacing N with 2N in both expressions,
2n S r,,2r
0 5 & &-a) Dy
— (2r+s+2n)
o YY) = 2 @71 @t (2
2n s r.,2r+1
0 SR +s+2n+ (X_a) (_l) y
— Qr+s+2n+1)
oY) = 2 X @ @r+D)! toc2)
On the other hand, from [Formula 29.2.2]
a" ® o . (x—a)s (_1)r 2r-n
aynUI(x,y) =upGy) = B 2@ (2r-z)! 2.2



o" 6 o (-2)° (~1)"y2rin
- — Qr+s+1) v
oy v(x,y) =wh(x,y) PN @ @r+1-m)] (229

Replacing N with 2N in both expressions,

o o r 2|’ 2n
Uz &, y) = 2 X *@) e ?) ((21r) 2n)!

o —a)s (=1) y2r-2n

r=n s=0
WV f2rstD) x-a)° (- Dy ar-zn+l
Wan(,y) = 2 2 @ T Groan

_ Y Y f2res+D) x-a)° DTy* 2"
Egof @ st @r-2n+D!

(v a/2r-2n)1=0 forr<n , 1/(2r-2n+1)1=0 forr<n)

Replacing I with I'+N in both expressions,

(X a) D™y

O N g(2r+s+2n)
uyZn(X y) ;0 Zof ( ) (2r)|
(2r+s+2n+1) (X a) (- 1)r+n 2r+l
wanGy) = 3 3 @ Q)1
i.e.
2n r.,2r
0 — (_1\D SRS (2r+s+2n) (X a) ( 1)
U(X,y) - ( 1) ;O sgof (a) S! (2r)! (uy2)
2n S r,,2r+l
0 1\ 3 ¢ (2r+s+2n+1) (x-a) (- )
oy v(x,y) = (-1) ;0 Xf @~ GriD)] (w2)
From (uy2) and | (ux2)
2n 2n
u(x,y) = D" u(x,y)
From (wy2) and
2n 2n

~v(x,y) = D" —-v(x,y)

6y2

Multiplying both side by (—l) n respectively, we obtain the desired expressions.

Example 2
It is assumed that f(z) , u(x,y) ) v(x,y) are all the same as in

Even-order partial derivatives of U(X Y ) ) V(X Y ) are

a2n o (X 1)5 ry2r
uxe,(x,y) = u(x,y) = ZZ(2r+s+2n)(2r+s+2n 1)
8X2 r=0s=0 st (2r)_
2n s r.,2r+l
_ 0 R (x-1)° D'y
vxep(Xx,y) = aXZnv(x,y) = rgo sgo(2r+s+2n+1)(2r+s+2n) o1 (2r+1)1

-10-



2n o o NS £y 2T
Wea(X,y) = ——u(x,y) = -1)"} 3, (2r+s+2n)(2r+s+2n-1) (17 CDYy

oy 2" 1=05=0 st (2r)t
2n S r.,2r+1
vyen(x,y) = ay2nv(x,y) = (—l)”§0§O(2r+s+2n+1)(2r+s+2n) (Xs—!l) ((-25|-r)+}:’L)!
Given 1- 31 to these for verification, it is as follows.
UXa [X_, ¥_] = 0x0x8x OxU[X, ¥]; VXa [X_, ¥_] =0x0x0x OV [X, ¥];
N[{uxs[1, -3], uxe;[1, -3, 38]}] N[{vxs[1, -3], vxez[1, -3, 30]}]
[-6.35686, —6.35686] [23.3365, 23.3365)
uya[x_, ¥_] =08,0,0,0,u[X, ¥]; VYa[X_, ¥_]1=0y0,0,0,V[X, ¥];
N[{uys[1, -3], uye,[1, -3, 38]}] N[{vys[1l, -3], vyez[1, -3, 38]}]
{-6.35686, -6.35686) 123.3365, 23.3365)
Next,

uxe,(X,y) ,uye,(x,y) = (3.2u)
vxe(X,y ), vye,(X,y) = 3.2y

The above two formulas immediately lead to the following.

Formula 29.3.3 ( Higher Derivative with respect to y )
If a complex function f(Z): u (x,y)+ i V(X,y) is holomorphic in the whole domain D

the following expressions hold for a natural number N .

o1 L 2n-1 a2n—1
n-1 _ n- : n
f () =D oy vix,y) +i (D 8y2n_1u(x,y) (3.30)
a2n a2n
1@ (z2) = D" u(x,y) +i D" v(X, 3.3L
(z) =D oy (x,y) +i D ayzn( y) (3.3L)

Example 3
It is assumed that f(z) , u(x,y) ) v(x,y) are all the same as in

The N - th order partial derivatives of U(X Y ) ) V(X Y ) are

2n-1 2r+1
_ o7 PR (x-1)°* Dy
uyo,(x,y) = ay2n_1u(x,y)—( 1) rgosgo(Zr+s+2n)(2r+s+2n—1) ST (2r+D)1
(09) = u(xy) =TS, S (2resv2n-1)( 2rss+2n-2) KL CDY
VYo, (X,y )= ay2n_1v X,y ) =D 2424 r+s+2n- r+s+2n- S (2r)1
_ o oy S (x-1)* (-Dy*
uye,(x,y)= ayZnu(x,y) = (-1 r;()S;()(2r+s+2n)(2r+s+2n—1) <1 (21
i 5§ (x-1)° Dy*™
vye,(X,y) = 2nv(x,y) = D" Y D (2r+s+2n+1)(2r+s+2n)

oy r=0s=0 sl (2r +1) 1
Then, (3.3C), (3.3L) become as follows respectively.

-1 -



12D (z) = D" wyon(x,y) +i D" uyon(x,y)
1M(2) = D" uyen(x,y) +i D" vyen(x,y)
When N=3, given 2+3i to these,
fs[z_1=90,6,08,8,0,f[z];
N[{fs[2+34] , (-1)?vyo3[2, 3, 38] +1 (-1)° uyo;[2, 3, 30]}]
{-73.0135 - 88.43951 , -73.0135 - 88.4395 1}
fs[2_]=0,06,8,8,0,0,f[z2];

N[{fs[2+314] , (-1)uyes[2, 3, 30] +1 (-1)° vye;[2, 3, 30]}]
{-107.608 - 99.9828 1 , -107.608 - 99.9828 i}

c.f.
n n

0
u(x,y) +i V(X, n=1,23,
o (x,y) o (x,y)

fM(z) =

2021.01.06

Kano Kono

| Alien’s Mathematics |

-12-
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