
09 Maclaurin Series of Completed Riemann Zeta

9.1 Maclaurin Series of  z

Lemma 9.1.1 ( Maclaurin series of  gamma function )

When  z is the gamma function, n  z is the polygamma function  and Bn,k f1 , f2 ,  are

Bell polynomials ,


2

 2
3-z

 = Σ
r=0


( )-1 r

2r r!

gr 3/2
zr z 3, 5, 7,  (1.g)

= 1 + 
211!

g1 ( )3/2
z 1 +

222!

g2 ( )3/2
z 2 +

233!

g3 ( )3/2
z 3 +

Where,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

Proof

  Formula 12.1.1 in " 12 Series Expansion of Gamma Function  & the Reciprocal " (A la Carte) was as follows.

When z is gamma function, n  z is polygamma function  and Bn,k f1 , f2 ,  is Bell polynomial,

( )z  = ( )a + Σ
n =1



n !
cn( )a

( )z-a n a  0 ,-1 ,-2 ,-3 ,

Where,

cn( )a  = ( )a Σ
k=1

n

Bn,k 0( )a  , 1( )a  , ,  n-1( )a n=1,2,3,

Using this,   3-z /2 can be expanded in Taylor series as follows.

 2
3-z

 = ( )a + Σ
r=1



r!
r ( )a  2

3-z
-a

r

a  3,5,7,

r ( )a  = ( )a Σ
k=1

r

Br,k 0( )a  , 1( )a  , ,  r-1( )a r=1,2,3,

Putting a =3/2 ,

 2
3-z

=  2
3

+ Σ
r=1



r!
r  3/2

 -
2
z r

(1.w)

( )r  2
3

 =  2
3

Σ
k=1

r

Br,k 0 2
3

 , 1 2
3

 , , r-1 2
3

r =1,2,3,

Here, putting

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

 , , r-1 2
3

r = 1,2,3,

Then,

( )r  2
3

=  2
3

gr 2
3

r =0,1,2,
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Substituting this for (1.w) , 

 2
3-z

 =  2
3

+  2
3

Σ
r=1


( )-1 r

2rr!

gr 3/2

 2
z r

i.e.

 2
3-z

 = 
2

Σ
r=0



( )-1 r

2rr!

gr 3/2
z r    2

3
 = 

2


Multiplying both sides by 2/  ,  we obtain the desired expression.

  Both sides of (1.g) are drawn as follows. The left side is blue and the right side is orange.  There are singular

points at z =3 ,5 ,7 ,  , so the convergence radius is 3 .

 

Lemma 9.1.2 ( Maclaurin series of holomorphized Riemann zeta )

  When  z is the Riemann zeta function and r  is Stieltjes constant, the following expression holds on

the whole complex plane.

-z( )1-z  = Σ
r=0



cr z
r (1.z)

= 1 - 
0!

0
z 1 - 

1!

1
z 2 - 

2!

2
z 3 - 

3!

3
z 4 - 

Where,

cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,
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Proof

  When r  is Stieltjes constant, it is known that the following expression holds on the whole complex plane

except z =1 .

( )z  = 
z-1
1

 + Σ
r=0



r!
( )-1 r

r ( )z-1 r

Multiplying both sides by z -1 ,

( )z-1 ( )z  = 1 + Σ
r=0



r!
( )-1 r

r ( )z-1 r+1 = 1 + Σ
r=1


( )-1 r-1

( )r-1 !

r-1
( )z-1 r

Replacing z with 1-z ,

( )1-z-1 ( )1-z  = 1 + Σ
r=1


( )-1 r-1

( )r-1 !

r-1
( )1-z-1 r

    = 1 + Σ
r=1


( )-1 2r-1

( )r-1 !!

r-1
zr

i.e.

-z( )1-z  = 1-Σ
r=1



( )r-1 !

r-1
zr

In this expression, however -1  may be defined, 1 cannot be included into  .  So, defining a new coefficient

cr  including the denominator as in the proviso of the lemma,  we obtain the desired expressions.

Q.E.D.

  Both sides of (1.z) are drawn as follows. The left side is blue and the right side is orange.  Both sides are

exactly overlapped and the left side (blue) is invisible. There is no singularity, so the convergence radius is  .
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Theorem 9.1.3 ( Maclaurin series of  z )

  Let completed Riemann zeta be

( )z  = -z( )1-z 
-

2

z

 2
z ( )z (1.1)

Then, the following expression holds on the whole complex plane.

( )z  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

2r-s  r -s !

log r-s
2s-t  s -t !

( )-1 s-t gs-t ( )3/2
ct z

r (1.2)

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,

Proof

( )z  = -z( )1-z 
-

2
z

 2
z ( )z

   = ( )1-z  = -z( )1-z 
-

2

1- z

 2
1-z ( )1-z

 = - 2

z


2

2
1-z  2

1-z
 z( )1-z

i.e.

( )z  =  2

z

 
2

 2
3-z

 -z( )1-z (1.1')

As first, Maclaurin series of  z/2
 is

 2

z

 = Σ
r=0



2r r!

log r
zr (1.p)

From  Lemma 9.1.1 and Lemma 9.1.2 , the two subsequent functions are as follows.


2

 2
3-z

 = Σ
r=0


( )-1 r

2r r!

gr 3/2
zr (1.g)

-z( )1-z  = Σ
r=0



cr z
r (1.z)

Where,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,
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cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,

Substituting these for (1.1') ,

( )z  =   Σ
r=0



2r r !

log r
z r  Σ

r=0


( )-1 r

2r r!

gr  3/2
zr  Σ

r=0


cr z

r

  According to Formula 1.1.2 in " 01 Power of Infinite Series " ( Infinite-degree Equation ) , the product of the

3 power series is expressed by the following equation.

 Σ
r=0



ar z
r  Σ

r=0



br z
r  Σ

r=0



cr z
r  = Σ

r=0



Σ
s=0

r

Σ
t=0

s

ar-s bs-t ct  z
r

So, putting

ar = 
2r r !

log r
, br = ( )-1 r

2r r !

gr ( )3/2

we obtain

( )z  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

2r-s  r -s !

log r-s
2s-t  s -t !

( )-1 s-t gs-t( )3/2
ct  z

r (1.2)

Where,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,

Q.E.D.

  The first few of  (1.2)  are

( )z  = 1 +  211!

log 1
 - 

211!

g1 ( )3/2
 - 

0!

0
z1

     +  222!

log 2
 + 

222!

g2 ( )3/2
 - 

1!

1

     - 
211!

log 1

211!

g1 ( )3/2
 + 

211!

g1 ( )3/2

0!

0
 - 

211!

log 1
0!

0
z2

     +  233!

log 3
 - 

233!

g3 ( )3/2
 - 

2!

2

    - 
222!

log 2

211!

g1 ( )3/2
 - 

222!

log 2
0!

0
 - 

222!

g2 ( )3/2

0!

0

    + 
211!

log 1
222!

g2 ( )3/2
 - 

211!

log 1
1!

1
 + 

211!

g1 ( )3/2

1!

1
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    + 
211!

log 1

211!

g1 ( )3/2

0!

0
z3

     +
     

 

  Both sides of  (1.2)  are drawn as follows. The left side is blue and the right side is orange. Although the right

side is calculated up to z 14
,  both sides are exactly overlapped  and the left side (blue) is invisible.

The singular points of the gamma function  (1.g)  are offset by the trivial zeros of Riemann zeta  (1.z)  and

are disappeared. so the convergence radius is  .  

 

  However, very high calculation precision is required at a point far from the origin. The following is the function

value at the first zero point 1/2+ i 14.1347 of  z .  It is calculated up to z 36
 at 64 digit precision

and is barely matched up to the 7th decimal place.
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9.2 Maclaurin Series of  z

Lemma 9.2.1 ( Maclaurin series of gamma function )

  When  z is the gamma function, n  z is the polygamma function  and Bn,k f1 , f2 ,  are

Bell polynomials ,

 4
5

+
2
z

 =  4
5

Σ
r=0



2r r!

gr 5/4
zr z  -

2
5

,-
2
9

,-
2

13
, (2.g)

Where,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r = 1,2,3,

Proof

  Formula 12.1.1 in " 12 Series Expansion of Gamma Function  & the Reciprocal " (A la Carte) was as follows.

When z is gamma function, n  z is polygamma function  and Bn,k f1 , f2 ,  is Bell polynomial,

( )z  = ( )a + Σ
n =1



n!
cn( )a

( )z-a n a  0 ,-1 ,-2 ,-3 ,

Where,

cn( )a  = ( )a Σ
k=1

n

Bn,k 0( )a  , 1( )a  , , n-1( )a n =1,2,3,

  Using this,  5/4+z/2 can be expanded in Taylor series as follows.

 4
5

+
2
z

 = ( )a + Σ
r=1



r!
r ( )a  4

5
+

2
z

-a
r

a  -
2
5

,-
2
9

,-
2
13

,

r ( )a  = ( )a Σ
k=1

r

Br,k 0( )a  , 1( )a  , ,  r-1( )a r=1,2,3,

Putting a =5/4 ,

 4
5

+
2
z

 =  4
5

+ Σ
r=1



r!
r ( )5/4

 2
z r

(2.w)

( )r  4
5

 =  4
5

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r =1,2,3,

Here, putting

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r = 1,2,3,

Then,

( )r  4
5

 =  4
5

gr r =0,1,2,

Substituting this for (2.w) ,

 4
5

+
2
z

 =  4
5

+ Σ
r=1


 4

5
r !

gr( )5/4
 2

z r

 =  4
5

Σ
r=0



2rr !

gr( )5/4
z r

  There are singular points at z = -5/2 ,-9/2 ,-13/2 , , so the convergence radius is 5/2 .
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Lemma 9.2.2 ( Maclaurin series of holomorphized Riemann zeta )

  When  z is the Riemann zeta function and r  is Stieltjes constant, the following expression holds on

the whole complex plane.

2 z-
2
1

 z+
2
1

 = - 2
1

Σ
r=0


cr z

r (2.z)

Where,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

Proof

  Let holomorphized Riemann zeta be

( )z-1 ( )z  = 1 + Σ
r=1


( )-1 r-1

( )r-1 !

r-1
( )z-1 r

Replacing z with z +1/2 ,

 z-
2
1

 z+
2
1

 = 1 + Σ
r=1


( )-1 r-1

( )r-1 !

r-1  z-
2
1 r

(2.t)

= 1+
0!

0  z -
2
1 1 

-
1!

2  z -
2
1 2 

+
2!

3  z -
2
1 3 

-
3!

4  z -
2
1 4 

+-

This is a Taylor expansion around z =1/2 .

  Since the function z -1  z  is holomorphized,  there is no singularity on the whole complex plane.

So the convergence radius of the Taylor serie is  .  Here, from the binomial theorem,

 z-
2
1 r 

 = Σ
s=0

r

( )-1 r-s 
r
s  2

1 r-s 

zs

Substituting this for (2.t) ,

 z-
2
1

 z+
2
1

 = Σ
r=0


( )-1 r-1

( )r-1 !

r-1
Σ
s=0

r

( )-1 r-s 
r
s  2

1 r-s 

zs

= Σ
r=0



Σ
s=r


( )-1 s-1

( )s-1 !

s-1
( )-1 s-r 

s
r  2

1 s-r 

zr

i.e.

 z-
2
1

 z+
2
1

 = Σ
r=0



 Σ
s=r


( )-1 r-1

( )s-1 !

s-1  
s
r  2

1 s-r 

zr

This has to be equal to the following Maclaurin series. 

 z-
2
1

 z+
2
1

 = Σ
r=0



ar z
r (2.m)

Because if it is not so, it contradicts the uniqueness of the power series.  Therefore,

ar = Σ
s=r


( )-1 r-1

( )s-1 !

s-1  
s
r  2

1 s-r
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From  (2.t) ,  the 1st term --1/( )-1 !  of a0  has to be read as 1.  That is,

ar  = 
1 - Σ

s=1



 s -1 !

s-1  2
1 s

r = 0

Σ
s=r



( )-1 r-1 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

Furthermore,  from  (2.m) ,

a0 = 1 - Σ
s=1



( )s-1 !

s-1  2
1 s

 = -
2
1
 2

1

  Next,

 z-
2
1

 z+
2
1

 = Σ
r=0



ar z
r = a0Σ

r=0



a0

ar 
zr = -

2
1
 2

1
Σ
r=0



-
2
1
 2

1
ar 

zr

Doubling both sides,

2 z-
2
1

 z+
2
1

 = - 2
1

Σ
r=0



( )1/2

-2ar 
zr

Then,  putting

cr = - ( )1/2

2ar 
 = 

1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,
 

we obtain

2 z-
2
1

 z+
2
1

 = - 2
1

Σ
r=0


cr z

r

  There is no singularity, so the convergence radius is  .

Theorem 9.2.3 ( Maclaurin Series of  z )

  Let completed Riemann zeta be

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z (2.1)

Then, the following expression holds on the whole complex plane.

( )z  = ( )0 Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t ( )5/4
ct z

r (2.2)

( )0 = -
41/4

1
 4

1
 2

1
 = 0.9942415563

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

       r = 1,2,3,
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cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

Proof

  Let holomorphized Riemann Zeta be

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z (2.1)

This can be transformed as follows.

( )z  = 
-

2

1
 2

1
+ z

 4
5

+
2
z  2 z-

2
1

 2
1

+z (2.1')

The 1st function can be expanded in Maclaurin series as follows.


-

2

1
 2

1
+ z

 = 
1/4

1
Σ
r=0


( )-1 r

2r r!

log r
zr (2.p)

From  Lemma 9.2.1 and Lemma 9.2.2 , the two subsequent functions are as follows.

 4
5

+
2
z

 =  4
5

Σ
r=0



2r r!

gr 5/4
zr z  -

2
5

,-
2
9

,-
2

13
, (2.g)

2 z-
2
1

 z+
2
1

 = - 2
1

Σ
r=0


cr z

r (2.z)

Where,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r = 1,2,3,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

Substitutin these for  (2.1') ,

( )z = -
1/4

1
 4

5
 2

1  Σ
r=0


( )-1 r

2r r!

log r
zr  Σ

r=0



2r r!

gr 5/4
zr  Σ

r=0



cr z
r

  According to Formula 1.1.2 in " 01 Power of Infinite Series " ( Infinite-degree Equation ) , the product of the

3 power series is expressed by the following equation.

 Σ
r=0



ar z
r  Σ

r=0



br z
r  Σ

r=0



cr z
r  = Σ

r=0



Σ
s=0

r

Σ
t=0

s

ar-s bs-t ct  z
r

So, putting

ar = Σ
r=0


( )-1 r

2r r!

log r
zr   , br = Σ

r=0



2r r!

gr 5/4
zr

( )0 = -
41/4

1
 4

1
 2

1
 = 0.9942415563
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we obtain

( )z  = ( )0 Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t 5/4
ct z

r (2.2)

Where,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r = 1,2,3,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

Q.E.D.

  The first few of  (2.2)  are

( )z  = ( )0 1 +  -
211!

log 1
+

211!

g1( )5/4
+ c1 z1

    +  222!

log 2
+

222!

g2( )5/4
+ c2 -

211!

log 1

211!

g1( )5/4
+

211!

g1( )5/4
c1 -

211!

log 1
c1 z2

    + -
233!

log 3 +
233!

g3( )5/4
+ c3 +

222!

log 2

211!

g1( )5/4
+

222!

log 2
c1+

222!

g2( )5/4
c1

    -
211!

log 1
222!

g2( )5/4
-

211!

log 1
c2 +

211!

g1( )5/4
c2 -

211!

log 1

211!

g1( )5/4
c1 z3

    +   
 

 

 

We can see that the coefficients of the odd degree are almost zero.

  Both sides of  (2.2)  are drawn as follows. The left side is blue and the right side is orange. Although the right

side is calculated up to z 14
,  both sides are overlapped  and the left side (blue)  is almost invisible.

The singular points of the gamma function  (2.g)  are offset by the trivial zeros of Riemann zeta  (2.z)  and

are disappeared. so the convergence radius is  .  
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  However, very high calculation precision is required at a point far from the origin. The following is the function

value at the first zero point i 14.1347 of  z .  It is calculated up to z 26
 at 26 digit precision and

is barely matched up to the 4th decimal place.
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9.3 Appendix

9.1.0 Higher order differential coefficient of  z
  Formula 26.1.2h in " 26 Higher and Super Calculus of Zeta Function etc " ( SuperCalculus ) was as follows.

  When  z  is Riemann zeta function, ( )n
 z  is the lineal n -th order derivative  and r  is Stieltjes

constant, the following expression holds on the whole complex plane except z =1 .

 n ( )z  = 
( )z-1 n+1

( )-1 -n n!
 + Σ

s=0


( )-1 s  s  1+s-n

( )z-1 s-n

Given z =a    1  in this equation, the n th order differential coefficient at a  is obtained. That is

 n ( )a  = 
( )a-1 n+1

( )-1 -n n!
 + Σ

s=0


( )-1 s  s  1+s-n

( )a -1 s-n

(3.a)

(1) Higher order differential coefficient at 0

  In particular, puttig a =0  in  (3.a) ,  the n th order differential coefficient at 0   is obtained. That is

 n ( )0  = ( )-1 n
Σ
s=0



 s-n !
 s 

 - n ! n=0,1,2, (3.0)

  The first few are as follows. We can see that all the differential coefficients are negative and the differential 

coefficient of the first or higher order is close to -n ! .

 ( )0 ( )0  = 0.5

 ( )1 ( )0  = 0.91893853320467    -1!

 ( )2 ( )0  = 2.00635645590858    -2!

 ( )3 ( )0  = 6.00471116686225    -3!

 ( )4 ( )0  = 23.9971031880137    -4!

 ( )5 ( )0  = 120.000232907558    -5!

   

cf.

  (3.0)  is equivalent to the following equation.

 n ( )0  = ( )-1 nΣ
s=0



s!

s+n
 - n! n=0,1,2,

From this, formula of O .Marichev ( http://mathworld.wolfram.com/StieltjesConstants.html ) is obtained. That is

Σ
s=0



s!

s+n
 = ( )-1 n n!+ n ( )0 n=0,1,2,

(2) Higher order differential coefficient at 1/2

  In particular, when a =1/2  in  (1.a) ,  the n th order differential coefficient at 1/2   is obtained as follows.
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 n  2
1

 = 
( )1/2-1 n+1

( )-1 -n n!
 + Σ

s=0


( )-1 s  s  1+s-n

( )1/2-1 s-n

= 
( )-1/2 n+1

( )-1 -n n!
 + Σ

s=0


( )-1 s  s  1+s-n

( )-1/2 s-n

= 
( )-1 n ( )-1 n+1

2n n !
 + Σ

s=0


 s 

2s s-n !

2n( )-1 s ( )-1 s-n

i.e.

 n ( )1/2  = 2n  ( )-1 nΣ
s=0



2s  s-n !

 s 
 - 2 n! (3.h)

  The first few are as follows. We can see that all the differential coefficients are negative and the differential 

coefficient of the first or higher order is close to -2n+1 n ! .

 ( )0 ( )1/2  = 1.46035450880958

 ( )1 ( )1/2  = 3.92264613920915    -221!

 ( )2 ( )1/2  = 16.0083570139286    -232!

 ( )3 ( )1/2  = 96.0033092453190    -243!

 ( )4 ( )1/2  = 767.997319720447    -254!

 ( )5 ( )1/2  = 7680.00060066206    -265!

     

9.3.1 Maclaurin Series of Riemann Zeta

  Using the higher order differential coefficiets, the Maclaurin series of Riemann zeta can be easily obtained.

Formula 9.3.1 ( Maclaurin series of  z  )

( )z  = Σ
r=0



r!
r ( )0

zr | |z < 1 (3.1)

Where,

r ( )0  = ( )-1 r
Σ
s=0



 s-r !
 s 

 - r! r=0,1,2,

  The first few terms of (3.1) are as follows. Because the absolute values of the numerator and denominator are

very close, the coefficients of the 5th and higher order are almost -1 .

 

  Moreover, 2D figure and 3D figure of the real part of (3.1) are as follows. The left side is blue and the right side
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is orange. This series (orange) can represent only the inside of the circle of 3D figure. 

 

Therefore, this series can not represent the zeros of ( )z . This is the reason I was hesitating the Maclaurin 

expansion of ( )z until now. 

Formula 9.3.1' ( Maclaurin series of  z +1/2  )

 z+
2
1

 = Σ
r=0



r!
r  1/2

zr | |z < 
2
1

(3.1')

Where,

r  1/2  = 2r  ( )-1 rΣ
s=0



2s  s-r !

 s 
 - 2 r! r=0,1,2,

  The first few terms of (3.1') are as follows.  Since the numerator is close to -2n+1 n !  and the denominator

is n ! ,  the coefficients of the 5th and higher degree are almost -2n+1 .

 

  In addition,  the convergence region of the series of  (3.1')  is within a circle with a radius of 1/2  centered

on the origin of the complex plane.  Therefore, this series also can not represent the zeros of  z +1/2 .

9.3.2 Maclaurin Series of Holomorphized Riemann Zeta

  These formulas are almost useless because the convergence range is narrow. The cause is the existence of
 

a singular point.  Because, the convergence radius of Maclaurin series is the distance from the origin to the

singular point.

  If so,  if the singularity is removed from ( )z , the convergence radius of the series must be infinite. To do

so, we may simply multiply ( )z  by  z -1 , and multiply  z+1/2  by  z -1/2 .
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Formula 9.3.2 ( Maclaurin series of  z -1 ( )z )

 z -1 ( )z  = 
2
1

 + Σ
r=1



r!
r r-1( )0 -r ( )0

zr (3.2)

Where,

r ( )0  = ( )-1 r
Σ
s=0



 s-r !
 s 

 - r! r=0,1,2,

Proof

  From  Formula 9.3.1 (3.1) ,

z( )z -( )z  = Σ
r=0



r!
r ( )0

zr+1 - Σ
r=0



r!
r ( )0

zr

  = Σ
r=1



( )r-1 !
 r-1 ( )0

zr -  0!
 ( )0 ( )0

z0 +Σ
r=1



r!
r ( )0

zr

  = 
2
1

 + Σ
r=1



r!
r r-1( )0 -r ( )0

zr (3.2)

   2D figure and 3D figure of the real part of (3.2) are as follows. The left side is blue and the right side is orange.

No convergence circle can be found in both figures. It seems that  (3.2)  holds on the whole complex plane.

 

  In a similar way, the following is obtain from  (3.1') .  This also holds on the whole complex plane.

Formula 9.3.2' ( Maclaurin series of  z -1/2  z+1/2 )

 z-
2
1

 z+
2
1

 = -
2
1
 2

1  1 + Σ
r=1



r!

hr -2rhr-1
zr (3.2')

Where,

hr =  1/2

2r 

 ( )-1 rΣ
s=0



2s  s-r !

 s 
 - 2 r! r=0,1,2,

- 16 -



9.3.3 Maclaurin Series of Completed Riemann Zeta

  In a similar way to  9.1  and  9.2 ,  the followings are obtained using  (3.2)  and  (3.2') .

Theorem 9.3.3 ( Maclaurin series of  z )

  Let completed Riemann zeta be

( )z  = -z( )1-z 
-

2

z

 2
z ( )z

Then, the following expression holds on the whole complex plane.

( )z  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s  r -s !

log r-s
2s-t  s -t !

( )s-t ( )1

t !

2t( )t-1  
0 -2( )t

0
zr

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

r ( )1  = 
1 r = 0

Σ
k=1

r

Br,k 0( )1  , 1( )1  , , r-1( )1 r = 1,2,3,

r0  = 
0    r = -1

( )-1 rΣ
s=0



 s -r !

 s 
 - r ! r = 0,1,2,

cf.

  Theorem 9.1.3  was as follows.

( )z  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

2r-s  r -s !

log r-s
2s-t  s -t !

( )-1 s-t gs-t ( )3/2
ct z

r

Where,

cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,

This expression is a Maclaurin expansion of

( )z  = ( )1-z  =  2

z

 
2

 2
3-z

 -z( )1-z

This is a rear attack. The weak point is a little hard to overlook the whole. The storong point is that the differential

coefficient of -z 1-z  is obtained from only one s .  Therefore, although high precision is required,  it is

possible to calculate these zeros even on notebook computers.

    On the contrary, Theorem 9.3.3  is Maclaurin expansion of

( )z  = 
-

2

z

 1+
2
z
 2( )z-1 ( )z

This is a frontal attack. The strong point is easy to overlook the whole.  The weak point is that s  has to be

accumulated infinitely to obtain the differential coefficient of 2 z -1  z . For this purpose, high precision

and a large calculation amount are required. Therefore, it is almost impossible to calculate these zeros on note
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book computers according to  Theorem 9.3.3 .

Theorem 9.3.3' ( Maclaurin series of  z )

  Let completed Riemann zeta be

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

Then, the following expression holds on the whole complex plane.

( )z  = ( )0 Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s r -s !

log r-s
2s-t  s -t !

gs-t

t !

ht - 2t ht-1
zr

( )0 = -
4 1/4

1
 4

1
 2

1
 = 0.9942415563

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

r = 1,2,3,

hr = 
0    r = -1

( )1/2
2r 

 ( )-1 rΣ
s=0



2s  s -r !

 s 
 - 2 r! r = 0,1,2,

cf.

  Theorem 9.2.3  was as follows.

( )z  = ( )0 Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t 5/4
ct z

r

Where,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r


( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,
 

This theorem and  Theorem 9.3.3'  are almost the same.  Both are orthodox approaches. The difference is the

the formula for the differential coefficient of holomorphized Riemann zeta.  Comparing cr  and hr , we see that

the former is half of the latter at the amount of calculation. This difference is not small. When calculating zeros

by using a notebook computer,  the calculation by Thorem 9.2.3  is somehow possible, but the calculation

by Thorem 9.3.3'  is almost impossible.

2018.09.07

Kano Kono

Alien's Mathematics
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