20 Series Expansion by Real & Imaginary Parts of Gamma Function
In this chapter, the gamma function is expanded into Taylor series, Laurent series and Maclaurin series by

real and imaginary parts.

Formulas to use
1. "|12 Series Expansion of Gamma Function & the Reciprocal|" Formula 12.1.1,12.1.2,12.2.1,12.2.2..

2. "[14 Taylor Expansion by Real Part & Imaginary Part|" Formula 14.1.2 . This reprint is as follows.

Formula 14.1.2 ( Reprint)

Suppose that a complex function f(Z) (Z =X+i y) is expanded around a real number @ into a Taylor

series with real coefficients as follows.
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Then, the following expressions hold for the real and imaginary parts u(x,y) ,v(x,y) . Where, OO =1.
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20.1 Taylor Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.1.1

When ﬂ Y4 ) is the gamma function, l//n( Z ) is the polygamma function and Bn,k(fl ) f2 y e ) are Bell
polynomials , Z = X +1i Yy and u(x ,y) ,V(X ,y) are real part and imaginary part of 1—(2 ) , the following

expressions hold for a = 0,-1,-2,-3,
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where,
cn@ = 1@ X B @), vi@) . vri@)  n=1,2,3,
0°=1

Proof
According to Formula 12.1.1, when f( z ) is the gamma function, (//n( Z ) is the polygamma function and

Bn,k(fl N PR ) are Bell polynomials, the following expression holds for a = 0,-1,-2,-3, -~
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where,

6@ =7@) LB ¥d@), vi@) . vna@))  n=1,2,3,
In (1.1), changing the initial value of S to O,
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Here, applying m to the right side with Z :x+iy ,
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f(2r+s+1)( a) = 02r+s+1(a)
So,
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Example: Taylor expansion around 2 ( numeric calculation )
According the formula, f( Z ) is expanded to Taylor series around 2 . The polynomial Bn,k(fl ) f2 y e ) is
generated using the function BellY [] of formula manipulation software Mathematica. The real and imaginary

parts at 1+0.1i are calculated, and the function value and the series value are compared respectivery. the

series are calculated up to 18 terms. The results are as follows.

Unprotect [Power]; Power[@, 8] =1;

Tblyr[n_, z ] := Table[PolyGamma [k, z], {k, 8, n-1}]
n

c[n_,a ] :=Gamma[a] ZBellY[n, k, Tbly[n, a]]
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N[{Re[Gamma [l +©.14]], u[l, 6.1, 2, 18]}]
[0.990207, ©0.990206}

N[{Im[Gamma[l+©.14]], v[1, 6.1, 2, 18]}]
[-©.0568238, - ©.0568222}

In both the real and imaginary parts, the function value and the series value are almost the same.

Formula 20.1.2

When 1_( YA ) is the gamma function, l//n( Z ) is the polygamma function and Bn,k(fl , fz ) e ) are Bell
polynomials , Z = X +1i Yy and U(X ,y) ,V(X ,y) are real part and imaginary part of 1/77z) , the following
expressions hold for a = 0,-1,-2,-3,
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(1.2) and cn(a) are according to Formula 12.1.2 . Applying |Formula 14.1.2 |to the second term on the
right side of (1.2), we obtain U(X,y ) and V(X,y) .

Example: Taylor expansion around 2 ( numeric calculation )

According the formula, llf( Z ) is expanded to Taylor series around 2. The polynomial Bn,k(fl , f2 y e ) is
generated using the function BellY [] of formula manipulation software Mathematica. The real and imaginary
parts at 1+0.1i are calculated, and the function value and the series value are compared respectivery. the
series are calculated up to 15 terms. The results are as follows.

Unprotect [Power]; Power[6, 8] = 1;

Tbl¢[n_, z_] := Table[PolyGamma [k, z], {k, 8, n-1}]

1 n ‘

c[n_,a_] := —Z(—l) Bell¥Y[n, k, Tbly[n, a]]
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1

N[{Re[Gamma[l-ra.li]], "t 8.1, 2, 15]}]

[1.90658, 1.00658}
1
N [{Im[
Gamma[l +©.11]
{©.9577631, 9.0577631}

The function value and the series value are exactly the same.

], v[1, 8.1, 2, 15]}]



20.2 Laurent Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.2.1 ( Laurent expansion )
When 1_( YA ) is the gamma function, l//n( Z ) is the polygamma function and Bn,k(fl , f2 ) e ) are Bell
polynomials , Z = X +1i Yy and U(X ,y) ,V(X ,y) are real part and imaginary part of I(z), the following

expressions hold .
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where,
Ch = kngn,k( vk, i@ .., Yn-alD)) n=1,2,3,
0°=1.

Proof

According to Formula 12.2.1, when 1_( Z ) is the gamma function, !//n( z ) is the polygamma function and

Bn,k(fl , f2 - ) are Bell polynomials, the following expression holds.
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where,

o = ZB( D @D v @) =123,

In (2.1), changing the initial value of S to O,
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Let Z=X+ iy , separate the first term into the real part and the imaginary part, and apply [Formula 14.1.2
to the second term. Then,
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Example: ( numeric calculation )
According the formula, 1_( YA ) is expanded to Laurent series around O . The polynomial Bn,k(fl , f2 y e ) is
generated using the function BellY [] of formula manipulation software Mathematica. The real and imaginary

parts at 0.5+0.1i are calculated, and the function value and the series value are compared respectivery.
the series are calculated up to 20 terms. The results are as follows.

Unprotect [Power]; Power|[8, 8] = 1;

Tblyr[n_, z_] := Table[PolyGamma [k, z], {k, &, n-1}]

c[n_] := ZBellY[n, k, Tblg[n, 1]]
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N[{Re[Gamma[©.5 +©.11]], u[®.5, 6.1, 20] }]
(1.69762, 1.69762}

N[{Im[Gamma[®.5+©.11]], v[0.5, 8.1, 208]}]
{-©.332843, -0.332843}

In both the real and imaginary parts, the function value and the series value are exactly the same.

Formula 20.2.2 ( reciprocal Laurent expansion )

When ﬂ Z ) is the gamma function, l//n( Z ) is the polygamma function and Bn,k(fl , f2 y e ) are Bell
polynomials , Z = X +1i Yy and u(x ,y) ,V(X ,y) are real part and imaginary part of 1/]—( YA ) , the following

expressions hold .
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Proof
According to Formula 12.2.2, when f( Z ) is the gamma function, (//n( Z ) is the polygamma function and

Bn,k(fl , f2 . ) are Bell polynomials, the following expression holds.
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where,

¢ = X D B vl i@ v vnaD) n=12,3, -
In (2.2) , changing the initial value of S to 2,

F(Z) ~¢ s=2 S_ls!

Let Z=X+ iy , separate the first term into the real part and the imaginary part, and apply [Formula 14.1.2
to the second term. Then,

&) =sc,_4
f(2r+s)(o) — (2r+s) Corss 1
fE0) = (2r+5+1) Cores

Therefore,
I x$ Dy*
~ o o XS (_1)ry2r+1
v(x,Y) =y + rgo Sgo(ZI’+S+:|.) Corss g1 (2I"+1)!

Example: ( numeric calculation )

According the formula, 1lf( Z ) is expanded to reciprocal Laurent series. The polynomial Bn,k(fl , f2 y e )

is generated using the function BellY [] of formula manipulation software Mathematica. Real and imaginary
parts at 0.5+0.1i are calculated, and the function value and the series value are compared respectivery.
the series are calculated up to 10 terms. The results are as follows.

Unprotect [Power]; Power[®, 6] = 1;

Tbly[n , z ] := Table[PolyGamma [k, z], {k, 8, n-1}]
n

c[n_] := Z (-1)“BellY[n, k, Tbly[n, 17]]

k=1

glz_, m_] :=z+Zsc[s—1]
5=2

zS
s!
XS (_1)r'y2r'
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m m x5 (_1)r'y2r'+1
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N[{Re[
Gamma[©.

1

], u[e.s, 8.1, 19]}]
54+0.11]
({0.567255, ©.567255]

1
I\I[{Im[Gamma[e.5+9.1 ] ], v(e.s, 0.1, 19]}]

{©.111219, ©.111219}

In both the real and imaginary parts, the function value and the series value are exactly the same.




20.3 Maclaurin Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.3.1
When I—(Z ) is the gamma function, l//n(Z ) is the polygamma function and Bn,k(fl , f2 ) e ) are Bell
polynomials , Z =X +1Yy and U(X ,y) ,v(x,y) are real part and imaginary part of 1_( l+Z) , the following

expressions hold .
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Proof

Giving @ =1 to|Formula 20.1.1| and replacing Z with Z+1 , we obtain the desired expressions.

Example: ( numeric calculation )

According the formula, 1—( 1+z ) is expanded to Maclaurin series. The polynomial Bn,k(fl N PR ) is
generated using the function BellY [] of formula manipulation software Mathematica. The real and imaginary
parts at 0.4+0.31 are calculated, and the function value and the series value are compared respectivery.
the series are calculated up to 18 terms. The results are as follows.

Unprotect [Power]; Power([@, 6] = 1;

Tbly[n_, z ] := Table[PolyGamma [k, z], {k, 8, n-1}]

c[n_] := ZBellY[n, k, Tblg[n, 1]]

k=1
m zS
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N[{Re[Gamma[l+©.4 +8.31]], u[@.4, 8.3, 18]}]
(0.847678, 0.847678}

N[{Im[Gamma[l +©.4+8.31]], v[0.4, 6.3, 18]}]
[-9.0119186, -0.0119186}

The function value and the series value are exactly the same.



Formula 20.3.2
When 1—(2 ) is the gamma function, l//n(Z ) is the polygamma function and Bn,k(fl , f2 y oo ) are Bell
polynomials , Z =X +iy and u(x,y) ,v(x,y) are real part and imaginary part of 1/1—( 1+Z) , the

following expressions hold .
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Proof

Giving @ =1 to |Formula 20.1.2 |and replacing Z with Z+1 , we obtain the desired expressions.

Example: ( numeric calculation )
According the formula, 1/7{1+2) is expanded to Maclaurin series. The polynomial Bn,k(fl N PR ) is
generated using the function BellY [] of formula manipulation software Mathematica. The real and imaginary

parts at 0.4+0.3i are calculated, and the function value and the series value are compared respectivery.

the series are calculated up to 10 terms. The results are as follows.

Unprotect [Power]; Power[8, 8] =

Tbly[n_, z ] := Table[PolyGamma [k, z], {k, &, n-1}]

c[n_] := Z (-1)%BellY[n, k, Thly¥[n, 1]]
k=1
zS

glz_, m_] :=1+Zc[s] —

XS (_1)r'y2r'
ufx_,y_,m.]:=1 c[s]— c[2r+s8] — ———
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V[X ,¥ ,m ] := c[2r+s+1] — —
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1
r=8 s=8 5
1

N[{Re[Gamma\[l +98.4+0.31] ]
{1.17946, 1.17946}

, u[8.4, 8.3, 19]}]

1

N[{Im[ ]
Gamma[l+©.4+©6.31]
{©.0165836, ©.0165836}

, V[0.4, 0.3, 19]}]



The function value and the series value are exactly the same.
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