20 Series Expansion by Real & Imaginary Parts of Gamma Function

In this chapter, the gamma function is expanded into Taylor series, Laurent series and Maclaurin series by real and imaginary parts.

Formulas to use

1. "12 Series Expansion of Gamma Function & the Reciprocal "Formula 12.1.1, 12.1.2, 12.2.1, 12.2.2.

2. " 14 Taylor Expansion by Real Part & Imaginary Part " Formula 14.1.2 . This reprint is as follows.

Formula 14.1.2 (Reprint)

Suppose that a complex function f(z) (z = x + iy) is expanded around a real number a into a Taylor series with real coefficients as follows.

$$f(z) = \sum_{s=0}^{\infty} f^{(s)}(a) \frac{(z-a)^s}{s!}$$

Then, the following expressions hold for the real and imaginary parts u(x, y), v(x, y). Where, $0^0 = 1$.

$$u(x,y) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} f^{(2r+s)}(a) \frac{(x-a)^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$$
$$v(x,y) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} f^{(2r+s+1)}(a) \frac{(x-a)^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r+1)!}$$

20.1 Taylor Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.1.1

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $\Gamma(z)$, the following expressions hold for $a \neq 0, -1, -2, -3, \cdots$.

$$\Gamma(z) = \Gamma(a) + \sum_{s=1}^{\infty} c_s(a) \frac{(z-a)^s}{s!}$$
The radius of convergence is the distance
from a to the nearest singularity.

$$u(x,y) = \Gamma(a) + \sum_{s=1}^{\infty} c_s(a) \frac{(x-a)^s}{s!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$

$$v(x,y) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s+1}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

$$|z-a| \leq \diamondsuit$$

where,

$$c_n(a) = \Gamma(a) \sum_{k=1}^n B_{n,k} (\psi_0(a), \psi_1(a), \dots, \psi_{n-1}(a)) \qquad n = 1, 2, 3, \dots$$
$$0^0 = 1.$$

Proof

According to Formula 12.1.1, when $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, the following expression holds for $a \neq 0, -1, -2, -3, \cdots$.

$$\Gamma(z) = \Gamma(a) + \sum_{s=1}^{\infty} c_s(a) \frac{(z-a)^s}{s!}$$
(1.1)

where,

$$c_n(a) = \Gamma(a) \sum_{k=1}^n B_{n,k} (\psi_0(a), \psi_1(a), ..., \psi_{n-1}(a))$$
 $n = 1, 2, 3, ...$

In (1.1), changing the initial value of s to 0,

$$\Gamma(z) = \sum_{s=0}^{\infty} c_s(a) \frac{(z-a)^s}{s!} \qquad \begin{cases} c_s(a) = \Gamma(a) & s = 0\\ c_s(a) = c_s(a) & s > 0 \end{cases}$$

Here, applying Formula 14.1.2 to the right side with z = x + iy,

$$f^{(s)}(a) = c_s(a)$$

$$f^{(2r+s)}(a) = c_{2r+s}(a)$$

$$f^{(2r+s+1)}(a) = c_{2r+s+1}(a)$$

So,

$$\begin{split} u(x,y) &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!} &\begin{cases} c_s(a) = \Gamma(a) & s = 0\\ c_s(a) = c_s(a) & s > 0 \end{cases} \\ &= c_{0+0} + \sum_{s=1}^{\infty} c_{0+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^0 y^0}{0!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!} \\ &= \Gamma(a) + \sum_{s=1}^{\infty} c_s(a) \frac{(x-a)^s}{s!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!} \\ v(x,y) &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s+1}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!} \end{split}$$

Example: Taylor expansion around 2 (numeric calculation)

According the formula, $\Gamma(z)$ is expanded to Taylor series around 2. The polynomial $B_{n,k}(f_1, f_2, ...)$ is generated using the function BellY[] of formula manipulation software **Mathematica**. The real and imaginary parts at 1+0.1*i* are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 18 terms. The results are as follows.

Unprotect[Power]; Power[0, 0] = 1;

Tbl
$$\psi$$
[n_, z_] := Table [PolyGamma [k, z], {k, 0, n - 1}]
c[n_, a_] := Gamma [a] $\sum_{k=1}^{n}$ BellY[n, k, Tbl ψ [n, a]·]
 Γ [z_, a_, m_] := Gamma [a] + $\sum_{s=1}^{m}$ c[s, a] $\frac{(z - a)^{s}}{s!}$
 $u[x_, y_, a_, m_] :=$ Gamma [a] + $\sum_{s=1}^{m}$ c[s, a] $\frac{(x - a)^{s}}{s!}$ + $\sum_{r=1}^{m} \sum_{s=0}^{m}$ c[2 r + s, a] $\frac{(x - a)^{s}}{s!} \frac{(-1)^{r} y^{2 r}}{(2 r)!}$
 $v[x_, y_, a_, m_] := \sum_{r=0}^{m} \sum_{s=0}^{m}$ c[2 r + s + 1, a] $\frac{(x - a)^{s}}{s!} \frac{(-1)^{r} y^{2 r+1}}{(2 r + 1)!}$

N[{Re[Gamma[1+0.1 \pm]], u[1, 0.1, 2, 18]}] {0.990207, 0.990206}

 $N[{Im[Gamma[1+0.1i]], v[1, 0.1, 2, 18]}]$

 $\{-0.0568238, -0.0568222\}$

In both the real and imaginary parts, the function value and the series value are almost the same.

Formula 20.1.2

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $1/\Gamma(z)$, the following expressions hold for $a \neq 0, -1, -2, -3, \cdots$.

$$\frac{1}{\Gamma(z)} = \frac{1}{\Gamma(a)} + \sum_{s=1}^{\infty} c_s(a) \frac{(z-a)^s}{s!} \quad |z-a| < \infty$$

$$u(x,y) = \frac{1}{\Gamma(a)} + \sum_{s=1}^{\infty} c_s(a) \frac{(x-a)^s}{s!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$

$$v(x,y) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s+1}(a) \frac{(x-a)^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

$$(1.2)$$

where,

$$c_{n}(a) = \frac{1}{\Gamma(a)} \sum_{k=1}^{n} (-1)^{k} B_{n,k} (\psi_{0}(a), \psi_{1}(a), ..., \psi_{n-1}(a))$$

$$0^{0} = 1.$$

Proof

(1.2) and $c_n(a)$ are according to Formula 12.1.2. Applying Formula 14.1.2 to the second term on the right side of (1.2), we obtain u(x, y) and v(x, y).

Example: Taylor expansion around 2 (numeric calculation)

According the formula, $1/\Gamma(z)$ is expanded to Taylor series around 2. The polynomial $B_{n,k}(f_1, f_2, ...)$ is generated using the function BellY[] of formula manipulation software **Mathematica**. The real and imaginary parts at 1+0.1i are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 15 terms. The results are as follows.

Unprotect[Power]; Power[0, 0] = 1;

$$Tbl\psi[n_{, z_{]} := Table[PolyGamma[k, z], \{k, 0, n - 1\}]$$

$$c[n_{, a_{]} := \frac{1}{Gamma[a]} \sum_{k=1}^{n} (-1)^{k} BellY[n, k, Tbl\psi[n, a]]$$

$$g[z_{, a_{}, m_{}] := \frac{1}{Gamma[a]} + \sum_{s=1}^{m} c[s, a] \frac{(z - a)^{s}}{s!}$$

$$u[x_{, y_{}, a_{}, m_{}] := \frac{1}{Gamma[a]} + \sum_{s=1}^{m} c[s, a] \frac{(x - a)^{s}}{s!} + \sum_{r=1}^{m} \sum_{s=0}^{m} c[2r + s, a] \frac{(x - a)^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$$

$$v[x_{, y_{}, a_{}, m_{}] := \sum_{r=0}^{m} \sum_{s=0}^{m} c[2r + s + 1, a] \frac{(x - a)^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r + 1)!}$$

$$N\left[\left\{Re\left[\frac{1}{Gamma\left[1+0.1\,\dot{n}\right]}\right], u\left[1, 0.1, 2, 15\right]\right\}\right] \\ \left\{1.00658, 1.00658\right\}$$
$$N\left[\left\{Im\left[\frac{1}{Gamma\left[1+0.1\,\dot{n}\right]}\right], v\left[1, 0.1, 2, 15\right]\right\}\right] \\ \left\{0.0577631, 0.0577631\right\}$$

The function value and the series value are exactly the same.

20.2 Laurent Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.2.1 (Laurent expansion)

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $\Gamma(z)$, the following expressions hold.

$$\Gamma(z) = \frac{1}{z} + \sum_{s=0}^{\infty} \frac{c_{s+1}}{s+1} \frac{z^s}{s!} \qquad |z| < 1$$

$$u(x,y) = \frac{x}{x^2 + y^2} + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{c_{2r+s+1}}{2r+s+1} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$

$$v(x,y) = -\frac{y}{x^2 + y^2} + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{c_{2r+s+2}}{2r+s+2} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!} \qquad |z| < \diamondsuit$$

where,

$$c_n = \sum_{k=1}^n B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \qquad n = 1, 2, 3, \dots$$
$$0^0 = 1.$$

Proof

According to Formula 12.2.1, when $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, the following expression holds.

$$\Gamma(z) = \frac{1}{z} + \sum_{s=1}^{\infty} \frac{c_s}{s!} z^{s-1}$$
(2.1)

where,

$$c_n = \sum_{k=1}^n B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \qquad n = 1, 2, 3, \cdots$$

ln (2.1), changing the initial value of s to 0,

$$\Gamma(z) = \frac{1}{z} + \sum_{s=0}^{\infty} \frac{c_{s+1}}{s+1} \frac{z^s}{s!}$$

Let z = x + iy, separate the first term into the real part and the imaginary part, and apply Formula 14.1.2 to the second term. Then,

$$f^{(s)}(0) = \frac{c_{s+1}}{s+1}$$

$$f^{(2r+s)}(0) = \frac{c_{2r+s+1}}{2r+s+1}$$

$$f^{(2r+s+1)}(0) = \frac{c_{2r+s+2}}{2r+s+2}$$

Therefore,

$$u(x,y) = \frac{x}{x^2 + y^2} + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{c_{2r+s+1}}{2r+s+1} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$
$$v(x,y) = -\frac{y}{x^2 + y^2} + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{c_{2r+s+2}}{2r+s+2} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

Example: (numeric calculation)

According the formula, $\Gamma(z)$ is expanded to Laurent series around 0. The polynomial $B_{n,k}(f_1, f_2, ...)$ is generated using the function BellY[] of formula manipulation software **Mathematica**. The real and imaginary parts at 0.5+0.1i are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 20 terms. The results are as follows.

Unprotect [Power]; Power [0, 0] = 1;
Tbl
$$\psi$$
[n_, z_] := Table [PolyGamma [k, z], {k, 0, n - 1}]
c[n_] := $\sum_{k=1}^{n}$ BellY[n, k, Tbl ψ [n, 1]]
 Γ [z_, m_] := $\frac{1}{z} + \sum_{s=0}^{m} \frac{c[s+1]}{s+1} \frac{z^{s}}{s!}$
 $u[x_, y_, m_] := \frac{x}{x^{2} + y^{2}} + \sum_{r=0}^{m} \sum_{s=0}^{m} \frac{c[2r+s+1]}{2r+s+1} \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$
 $v[x_, y_, m_] := -\frac{y}{x^{2} + y^{2}} + \sum_{r=0}^{m} \sum_{s=0}^{m} \frac{c[2r+s+2]}{2r+s+2} \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r+1)!}$
 $N[{Re[Gamma[0.5+0.11]], u[0.5, 0.1, 20]}]$
 $\{1.69762, 1.69762\}$
 $N[{Im[Gamma[0.5+0.11]], v[0.5, 0.1, 20]}]$

$$\{-0.332843, -0.332843\}$$

In both the real and imaginary parts, the function value and the series value are exactly the same.

Formula 20.2.2 (reciprocal Laurent expansion)

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $1/\Gamma(z)$, the following expressions hold.

$$\frac{1}{\Gamma(z)} = z + \sum_{s=2}^{\infty} sc_{s-1} \frac{z^s}{s!} \qquad |z| < \infty$$
$$u(x, y) = x + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (2r+s) c_{2r+s-1} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$
$$v(x, y) = y + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (2r+s+1) c_{2r+s} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

where,

$$c_n = \sum_{k=1}^{n} (-1)^k B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \qquad n = 1, 2, 3, \dots$$
$$0^0 = 1$$

Proof

According to Formula 12.2.2, when $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, the following expression holds.

$$\frac{1}{\Gamma(z)} = z + \sum_{s=1}^{\infty} \frac{c_s}{s!} z^{s+1}$$
(2.2)

where,

$$c_n = \sum_{k=1}^n (-1)^k B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \qquad n = 1, 2, 3, \cdots$$

ln (2.2), changing the initial value of s to 2,

$$\frac{1}{\Gamma(z)} = z + \sum_{s=2}^{\infty} s c_{s-1} \frac{z^s}{s!}$$

Let z = x + iy, separate the first term into the real part and the imaginary part, and apply Formula 14.1.2 to the second term. Then,

$$f^{(s)}(0) = sc_{s-1}$$

$$f^{(2r+s)}(0) = (2r+s) c_{2r+s-1}$$

$$f^{(2r+s+1)}(0) = (2r+s+1) c_{2r+s}$$

Therefore,

$$u(x, y) = x + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (2r+s) c_{2r+s-1} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$
$$v(x, y) = y + \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (2r+s+1) c_{2r+s} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

Example: (numeric calculation)

According the formula, $1/\Gamma(z)$ is expanded to reciprocal Laurent series. The polynomial $B_{n,k}(f_1,f_2,...)$ is generated using the function *BellY*[] of formula manipulation software *Mathematica*. Real and imaginary parts at 0.5+0.1i are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 10 terms. The results are as follows.

.

Unprotect [Power]; Power [0, 0] = 1;
Tbl
$$\psi$$
[n_, z_] := Table [PolyGamma [k, z], {k, 0, n - 1}]
c[n_] := $\sum_{k=1}^{n} (-1)^{k}$ BellY[n, k, Tbl ψ [n, 1]]
g[z_, m_] := z + $\sum_{s=2}^{m}$ s c[s - 1] $\frac{z^{s}}{s!}$
u[x_, y_, m_] := z + $\sum_{r=0}^{m} \sum_{s=0}^{m} (2r + s) c[2r + s - 1] \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$
v[x_, y_, m_] := y + $\sum_{r=0}^{m} \sum_{s=0}^{m} (2r + s + 1) c[2r + s] \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r + 1)!}$
N[{Re[$\frac{1}{\text{Gamma}[0.5 + 0.1 \text{ h}]}$], u[0.5, 0.1, 10]}]
 $\{0.567255, 0.567255\}$
N[{Im[$\frac{1}{\text{Gamma}[0.5 + 0.1 \text{ h}]}$], v[0.5, 0.1, 10]}]

In both the real and imaginary parts, the function value and the series value are exactly the same.

20.3 Maclaurin Expansion by Real & Imaginary Parts of Gamma Function & the Reciprocal

Formula 20.3.1

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $\Gamma(1+z)$, the following expressions hold.

$$\begin{split} \Gamma(1+z) &= 1 + \sum_{s=1}^{\infty} c_s \frac{z^s}{s!} \qquad |z| < 1 \\ u(x,y) &= 1 + \sum_{s=1}^{\infty} c_s \frac{x^s}{s!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!} \\ v(x,y) &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s+1} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!} \qquad |z| < \diamondsuit$$

where,

$$c_n = \sum_{k=1}^n B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \qquad n = 1, 2, 3, \dots$$
$$0^0 = 1$$

Proof

Giving a = 1 to Formula 20.1.1 and replacing z with z+1, we obtain the desired expressions.

Example: (numeric calculation)

According the formula, $\Gamma(1+z)$ is expanded to Maclaurin series. The polynomial $B_{n,k}(f_1, f_2, ...)$ is generated using the function BellY[] of formula manipulation software **Mathematica**. The real and imaginary parts at 0.4+0.3i are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 18 terms. The results are as follows.

Unprotect [Power]; Power [0, 0] = 1;
Tbl
$$\psi$$
[n_, z_] := Table[PolyGamma[k, z], {k, 0, n - 1}]
c[n_] := $\sum_{k=1}^{n}$ BellY[n, k, Tbl ψ [n, 1]]
f[z_, m_] := 1 + $\sum_{s=1}^{m}$ c[s] $\frac{z^{s}}{s!}$
u[x_, y_, m_] := 1 + $\sum_{s=1}^{m}$ c[s] $\frac{x^{s}}{s!}$ + $\sum_{r=1}^{m} \sum_{s=0}^{m}$ c[2r+s] $\frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$
v[x_, y_, m_] := $\sum_{r=0}^{m} \sum_{s=0}^{m}$ c[2r+s+1] $\frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r+1)!}$
N[{Re[Gamma[1+0.4+0.3 i]], u[0.4, 0.3, 18]}]
{0.847678, 0.847678}
N[{Im[Gamma[1+0.4+0.3 i]], v[0.4, 0.3, 18]}]
{-0.0119186, -0.0119186}

The function value and the series value are exactly the same.

Formula 20.3.2

When $\Gamma(z)$ is the gamma function, $\psi_n(z)$ is the polygamma function and $B_{n,k}(f_1, f_2, ...)$ are Bell polynomials, z = x + iy and u(x, y), v(x, y) are real part and imaginary part of $1/\Gamma(1+z)$, the following expressions hold.

$$\frac{1}{\Gamma(1+z)} = 1 + \sum_{s=1}^{\infty} c_s \frac{z^s}{s!} \qquad |z| < \infty$$
$$u(x,y) = 1 + \sum_{s=1}^{\infty} c_s \frac{x^s}{s!} + \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} c_{2r+s} \frac{x^s}{s!} \frac{(-1)^r y^{2r}}{(2r)!}$$
$$v(x,y) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} c_{2r+s+1} \frac{x^s}{s!} \frac{(-1)^r y^{2r+1}}{(2r+1)!}$$

where,

$$c_n = \sum_{k=1}^{n} (-1)^k B_{n,k} (\psi_0(1), \psi_1(1), \dots, \psi_{n-1}(1)) \quad n = 1, 2, 3, \dots$$
$$0^0 = 1$$

Proof

Giving a = 1 to Formula 20.1.2 and replacing z with z+1, we obtain the desired expressions.

Example: (numeric calculation)

According the formula, 1/I(1+z) is expanded to Maclaurin series. The polynomial $B_{n,k}(f_1, f_2, ...)$ is generated using the function BellY[] of formula manipulation software **Mathematica**. The real and imaginary parts at 0.4+0.3i are calculated, and the function value and the series value are compared respectivery. the series are calculated up to 10 terms. The results are as follows.

Unprotect [Power]; Power [0, 0] = 1;
Tbl
$$\psi$$
[n_, z_] := Table [PolyGamma[k, z], {k, 0, n - 1}]
 $c[n_] := \sum_{k=1}^{n} (-1)^{k}$ BellY[n, k, Tbl ψ [n, 1]]
 $g[z_{-}, m_{-}] := 1 + \sum_{s=1}^{m} c[s] \frac{z^{s}}{s!}$
 $u[x_{-}, y_{-}, m_{-}] := 1 + \sum_{s=1}^{m} c[s] \frac{x^{s}}{s!} + \sum_{r=1}^{m} \sum_{s=0}^{m} c[2r+s] \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r}}{(2r)!}$
 $v[x_{-}, y_{-}, m_{-}] := \sum_{r=0}^{m} \sum_{s=0}^{m} c[2r+s+1] \frac{x^{s}}{s!} \frac{(-1)^{r} y^{2r+1}}{(2r+1)!}$
 $N[\{Re[\frac{1}{Gamma[1+0.4+0.3 \pm]}], u[0.4, 0.3, 10]\}]$
 $\{1.17946, 1.17946\}$
 $N[\{Im[\frac{1}{Gamma[1+0.4+0.3 \pm]}], v[0.4, 0.3, 10]\}]$

The function value and the series value are exactly the same.

2022.03.06

Kano Kono Hiroshima, Japan

Alien's Mathematics