
04 Sum of series equivalent to the Riemann hypothesis

  As an example of application of the preceding chapter " 03 Vieta's Formulas in Infinite-degree Equation ", we

take up the sum of the series equivalent to the Riemann hypothesis in this chapter. Such a series and its sum

are obtained from Vieta's formula in the Maclaurin series of function -z 1-z  which is a part of completed

Riemann zeta function.

4.1 Factorization of -z (1-z )

In this section, we factor -z 1-z , which is a part of  z , around 0.

Formula 4.4.1

When   is Euler-Mascheroni constant,  z  is Riemann zeta function  and the non-trivial zeros are

xn+ i yn    n =1,2,3, ,  the following expression holds.

-z( )1-z  = 
2 ( )3-z  2


e log2-1-

2


z

Π
n =1



 1-
xn

2+ yn
2

2xn z
+

xn
2+ yn

2

z2

e xn
2 + yn

2

2xn z

(1.1)

Proof

 Let completed zeta function be as follows.
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According to Formula 8.1.1 in " 08 Factorization of Completed Riemann Zeta " ( Riemann Zeta Function ) ,

 z  was represented by the Hadamard product as follows.
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When the non-trivial zeros are zk = xk  i yk   k =1,2,3, ,
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If  xn = 1/2   n =1,2,3,
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Trivial Zeros
  Trivial zeros z =3,5,7,  of  1-z  are contained in 1/  3-z  2 .  The reason is as follows.

Formula 11.1.1 (1.3+)  in " 11 Series Expansion of Reciprocal of Gamma Function " ( A la carte ) was as follows.
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Since  the exponential function e z
 has no zero,  this formula means that z =3,5,7,  are the zeros of

1/  3-z  2
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4.2 Maclaurin Expansion by Stieltjes Constants

Formula 4.2.1

  When  z  is Riemann zeta function,  the following expression holds on whole complex plane.
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Where, s  is Stieltjes constant defined by the following expression.
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  It is known that the following expression holds on whole complex plane.
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Note

  The function -z 1-z  does not have singular point on whole complex plane. So, the convergence radius

of  (2.1)  is infinite.
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4.3 Maclaurin Expansion by Hadamard Product

  As seen in Section 1,  when non-trivial zeros of  z are zk = xk  i yk   k =1,2,3, ,  the function

-z 1-z  was factored asfollows.
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Each function which constitutes this is expanded to Maclaurin series as follows, respectively. 

Maclaurin expansion of the reciprocal of gamma function

  According to Formula12.3.3 in " 12 Series Expansion of Gamma Function  & the Reciprocal " ( A la carte ) ,

whenn  z is the polygamma function  and Bn,k f1 , f2 ,  are Bell polynomials,
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Maclaurin expansion of the reciprocal of exponential function

  Exponential function of (1.1)  is expanded to Maclaurin series as follows.
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Maclaurin expansion of non-trivial zeros

  According to Formula3.6.1 in " 03 Vieta's Formulas in Infinite-degree Equation " ( Infinite-degree Equation ) ,

the non-trivial zeros of  (1.1)  is expanded to Maclaurin series as follows.
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Maclaurin series of -z 1-z

  Maclaurin series of -z 1-z  consists of the product of (3.g), (3.e) and (3.z) .  That is,
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  According to Formula1.1.2 in " 01 Power of Infinite Series " ( Infinite-degree Equation ) ,  The product of the

three series of  (1.1)  is expressed as follows. ( Where, a0 = b0 = c0 =1  )
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-z( )1-z  = 1 + z1
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Coefficients of the 1st, 2nd, 3rd degree

  Comparing  Formula 4.2.1  and  (3.0) ,  we obtain the following formula.

Formula 4.3.1

  When   is Euler-Mascheroni constant, s  is Stieltjes constant, n  z is the polygamma function

and non-trivial zeros of Riemann zeta function are xn+ i yn    n =1,2,3, ,  the following expressions hold.
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Proof

  From  Formula 4.2.1 ,
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4.4 Proposition equivalent to the Riemann Hypothesis

  From Formula 4.3.1 in the previous section, a proposition equivalent to the Riemann hypothesis is obtained

Proposition 4.4.1

  When s  is Stieltjes constant, n  z is the polygamma function  and  non-trivial zeros of Riemann zeta 

function are 1/2+ i yr    r =1,2,3, ,  the following expressions hold.
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Proof of equivalence

  According to Theorem 8.2.4 in " 08 Factorization of Completed Riemann Zeta " ( Riemann Zeta Function ) ,

If  Riemann hypothesis is true,  the following expression holds.,
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  According to Formula 3.6.1 and the Corollary 3.6.1 in " 03 Vieta's Formulas in Infinite-degree Equation ",

if  xr1 = 1/2 ,
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 1/4+yr1

2

1 3

 + Σ
r1=1



 1/4+yr1

2

1 2

 Substituting this for the right side of  (3.13) in Formula 4.3.1 ,

-
2

2
 = 

3

0
3

+ 01 + 
6!!
1

2 2
3

-
3
1
Σ
r1=1



 1/4+yr1

2

1 3

 + Σ
r1=1



 1/4+yr1

2

1 2

Further, substituting  (4.12)  for the last term,

-
2

2
 = 

3

0
3

+ 01 + 
6!!
1

2 2
3

 -
3
1
Σ
r1=1



 1/4+ yr1

2

1 3

+ 0
2 + 20 +21 - log + 0 2

3
-

4
1
1 2

3

From this,

Σ
r1=1



 1/4+ yr1

2

1 3

 = 0
3 +30

2 +60 +61 +301 + 
2
3
2 -3log

+ 30 2
3

-
4
3
1 2

3
+

16
1

2 2
3

(4.13)

Numerical Calculation

When we take 20,000 zero points yr on the critical line and calculate  (4.11)  (4.13)  using the formula 

manipulation software Mathematica , the results are as follows respectively.

Both sides match up to 3  significant digits.

Both sides match up to 9  significant digits.

- 11 -



Both sides match up to 15  significant digits.  The reason that this number of digits does not reach 27  is

probably due to the low calculation accuracy on the right side.

  (4.11)  is the same as the following in Theorem 8.2.4 ( " 08 Factorization of Completed Riemann Zeta " ). 

Σ
r =1



1/4+ yr
2

1
 = 1+

2


- log 2-
2

log
 = 0.0230957 (1.2 ' )

So, (4.11) is equivalent to the Riemann hypothesis according Theorem 8.2.4 . Since  (4.12) & (4.13)  are derived

using (1.2 ' ),  these are also respectively equivalent to the Riemann hypothesis.

  However, (4.12) & (4.13) are considerably faster than (4.11) at convergence speed. If more non-trivial zeros are

computed by a high-speed machine,  both sides of (4.13) will become infinitely closer.

 But even so, it only serves as circumstantial evidence for the Riemann hypothesis. So, Proposition 4.4.1 has to

be proved analytically. And for the purpose, imaginary parts yr of the non-trivialzeros 1/2 i yr   r=1,2,3,

have to be obtained as a formula.

2018.06.16

2024.03.24 Updated numerical calculation.

Kano Kono      

Hiroshima, Japan

Alien's Mathematics
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http://fractional-calculus.com/completed_riemann_zeta.pdf
http://fractional-calculus.com

	4.1 Factorization of a part of xi
	4.2 Expansion by Stieltjes Constants
	4.3 Expansion by Hadamard Product
	4.4 Equivalent Proposition



