Summary of Riemann Zeta Function

1 Zeta Generating Functions

Both of hyperbolic functions and trigonometric functions can be expanded to Fourier series and Taylor series. And if the
termwise higher order integration of these is carried out, Riemann Zeta Functions are obtained.

Where, these are automorphisms which are expressed by lower zetas. However, in this chapter, we stop those so far.
The work that obtain the non-automorphism formulas by removing lower zetas from these are performed subsequent to
Chapter2 .

In this chapter, we obtain the following polynomials from the zeta generating functions
Where, Riemann Zeta, Dirichlet Eta and Dirichlet Lambda are as follows.
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Bernoulli numbers and Euler numbers are as follows.
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Furthermore, if the termwise higher order differentiation of the Fourier series of each family of tanh, cot and tan are carried
out, the following expressions are obtained.
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Where, nDr are the Eulderian Numbers and Tn—1 are the tangent numbers. These are defined as follows respectively.
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2 Formulas for Riemann Zeta at natural number

In this chapter, removing the lower zetas from automorphism formulas in the previous chapter, we obtain
non-automorphism formulas for Riemann Zeta at natural number.
Where, Bernoulli numbers and Euler numbers are as follows.

Eo=1, E,=-1, E,=5, Eg=—61, E4=1385,

S
And Harmonic numberis Hy =Y 1/t = w(1+s)+y
t=1

For O<x< 271,

-1 1 ) o 1 ) n B, y"-1+2r
=i rian RS 2 o | ey
GO-D'\n-1"2n =10 S! " =\ 2r-1) 2r(n-1+2r)!
_ XM (n Dx
é/(n) (n 1)| { — 2n |OgX}
. o (xr) 1 . l—n BzrXn—1+2r
rzl szo st (nexr - lgl 2r 2r(n-1+2r)!

For O<Xx=r,
2n—1 Xn w0 n-1 (Xr)s (_1)I’ o
c) = 2n—1_1[2n!_; n_ xr 2

s=0 - r e r=1

-n (22r_1)82rxn—1+2r
( ) 2r(n-1+2r)!



n-1

-1 {(x2r-1)}° ¢ @D

|

2" [ X o
= +
=27 120 D60DTEET ST @y
1 -n (22r_2)82rxn—1+2r
+5 3
2 r=1 ( 2r—1) 2I’(n —l+2|’)!
2" X" 1 X 5 -2 {(xQr-1))° eV
(0 = o oy g lop )+ 5 NG D
2" 1 2(n 1)- n-1 2 r=1 s=0 S* (2r—1)
1 1-n (22r_2)82rxn—1+2r
+5 3
2 rzl( 2r ) 2r(n-1+2r)!
Especially,
_ n+1 o n-1 r 1 o -Nn BZI’
cM= 2nt(h-D Z‘ Z:‘, ! r”ef_r;l(Zr—l) 2r(n-1+2r)!
n-1 “ n-1 (2r s 1 . -n B 2n—1+2r
O Ty ) i
nN-D & st me? &\ 2r-1) 2r(n-1+2r)t
2
_ n +l o nN-2 r l 00 1—[’] BZI’
SO =50a-D * ASST g ;1( o )Zr(n—1+2r)!
B 2n 1 1 w0 n-1 r (_ ) “ -n (22r_1)82r }
B L = I S S
2" 1 5t Qr-1)° e @D
= +
< 2”—1{ 2G-DIG-D A% ST o1y
+ L& - (22r_2)82r ]
E% 2r-1/ 2r(n-1+2r)!
2n 1 1 © n-2 (2r 1) e—(2r 1)
= +log2 | +
s 2”-1{ 2(n-D! ( n-1 log ) ;1 =0 s! @r-1n"
1 00 1 n (22r_2)BZr }
+5 3
2 r:l( 2r ) 2r(n_1+2r)!
2" 2"? 502 (Ar-2)° e ¢
cn) = n [ — N\ (- +2 ¢ l) n
2'-1 L -DI(h-1) =& st (@2r-D
1 1-n (22r_2)82r2n—1+2r]
+5 3
2 r=1( 2r ) 2r(n-1+2r)!
Example
_ 6 © 1 2 r3 r4 ) 1 » -5 BZI‘
€® = 25|4+§1(1 ETRT TRV ;1(3_1) 2r(4+2n1
2 oo{ 2r @202 @n°. @D* ] 1 o -5\ By2"¥
«® m+§1 ot e T 1502 Z(zr 1) 2r(4+2r)!
5241 @ rt o r? ) 1 @ Bor
‘O =28t A 1+_!+_!+ r5er r;l( ) 2r(4+2r)!
o2 [ oo( rt )(—1)r -5 | (2%-1)B,
€= 24—1[ 251 & l+1_ 2173 ar 2 (2r 1) 2r(4+2)1

|



81 ¢ or-1 (2r—1)2) e @D 1 . -3\ (2%-2)By }
‘® ‘7{§+§1(1+ TR @r-1n3 721(2 )2r(2+2f)'
_8[1(1 “ (. 2r-1) e @D 14 (27-2 BZr}
® ‘7{Z(§+'°92)+§1(“ 11 ) @r-n° 521( ) 2r(2+2n)!
_B[1, &, 42y e @D 1 (22r—2)82r22+2f}
‘@ _7{7+§‘1(1+ 1t ) er-nd 2 Z (Zr) 2r(2+2r)!

3 Formulas for Riemann Zeta at odd number

In this chapter, we obtain non-automorphism formulas for Riemann Zeta at odd number.
Where, Bernoulli numbers, Euler numbers and tangent numbers are as follows.
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4 Formulas for Riemann Zeta at even number

In this chapter, we obtain non-automorphism formulas for Riemann Zeta at even number.
Where, Bernoulli numbers and Euler numbers are as follows.
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5 Formulas for Riemann Zeta at complex number

In this chapter, we obtain the formulas for Riemann Zeta at a complex number by processing " |2 Formulas for Riemann
| Zeta at natural number]"
Where, Bernoulli numbers are as follows.
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6 Global definition of Riemann Zeta, and generalization of related coefficients
From Euler to Riemann, the zeta function was defined with patches as the domain was expanded.
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This is inconvenient. so, we focus on the following sequence.
B, = Zr(—l)r‘s(r)s“ r=0,1,2,n
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Using this sequence, we can define the Zeta function on the whole complex plane as follows.

Definition 6.2.1
We difine the Riemann Zeta Function on the complex plane as follows.
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Furthermore, by using this sequence, the following various coefficients can be generalized.
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7 Completed Riemann Zeta

In 7.1, we consider even function and odd function for complex function. Generally, we obtain the same results as for
real-valued functions, but the results unique to complex-valued functions are as follows.

Theorem 7.1.3
Let f(Z) be a complex function in the domain D .
(1) ¥ f(Z) is an even function , both the real part and the imaginary part are even functions.

(2) K f(Z) is an odd function , both the real part and the imaginary part are odd functions.



Theorem 7.1.4
Let f(Z) be a complex function in the domain D . Then,

if f(Z) is an even function or an odd function , If(Z) | 2 is an even function.

In 7.2, we study complex conjugate properties. Especially when the function f(Z) is an even function or an odd function
with complex conjugate properties, two important theorems are obtained.

Theorem 7.2.3
When f(X ,y):U (X ,y)+ iV(X,y) is a function with the complex conjugate property in the domain D ,
(1) if f(X,y) is an even function,
u®y) = ux,-y) = u(xy) =uCx,-y)
v,y = v, -y) = vy =vEx, oY)
(2) if f(X,y) is an odd function,
u®.y) = ux,-y) = -uxy) = -ux,-y)
vy = v -y) = vEexy) = -vEex-y)

Corollary 7.2.3
Let f(X ,y):U (X ,y)+ iV(X,y) be a function with the complex conjugate property in the domain D .
Then, the followings hold for any real number X,y € D.
(1) when f(X,y) is an even function, v(x,0)=0 , v(0,y)=0.
(2) When f(X,y) is an odd function , U (O,y) =0 , v(x,0)=0.

Theorem 7.2.4
When f(Z) is a function with the complex conjugate property in the domain D and has a zero

23=xtiy; (%#20),

(1) if f@)isanevenfunction, —=X1—iy; , X;—iYy; , —XpFiy; arealsozeros of f(Z).

(2) if f(Z)isanoddfunction, =Xq—iYy1 , Xg—iYy1 , —XyFiyy arealsozeros of f(Z).
In 7.3, symmetric functional equations are derived from functional equations.

Formula 7.3.1 (Riemann)
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Where, z7# *1/2

In 7.4, we define the completed Riemann zeta functions f(z), E(Z) as follows, respectively. These are a little different
from Landau's definition.

@ = -7 21 L)
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Then, the following equations hold from Formula 7.3.1 .
@ =¢1-D)
2@ =5¢0)
From the latter, we can see that E(Z) is an even function. Therefore, Thoerem 7.2.3 (1) and Corollary 7.2.3 hold for

the real part u(x,y) and the imaginary part v(x,y) of E(Z) as they are. And from Theorem 7.2.4 , the following very
important theorem is obtained.



Theorem 7.4.1

If Riemann zeta function ((Z) has a non-trivial zero whose real part is not 1/2 , the one set consists of
the following four.

12+a,+ip . WU2-a,tipy  (0<a<1/2)

08 Factorization of Completed Riemann Zeta
In 8.1, the following Hadamard product is shown.

Formula 8.1.1 ( Hadamard product of £(2) )
Let completed zeta function be as follows.

@ = -5 1 L)

When non-trivial zeros of {(z) are z, =X, tiy, k=1,2,3,~ and y is Euler-Mascheroni constant,
§(Z) is expressed by the Hadamard product as follows.
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In 8.2, we consider how the formulas in the previous section are expressed when non-trivial zeros whose real part is 1/2
and non-trivial zeros whose real part is not 1/2 are mixed. Then, we obtain the following theorems.

Theorem 8.2.2

Let ¥ be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are X,+ i Yo N =1,2,3, .
Among them, zeros whose real part is 1/2 are 1/2+i y, r=1, 2,3, and zeros whose real parts is not 1/2

are 12+t o *ifls (0<ag<1/2) $=1,2,3,- . Then the following expressions hold.
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Formula 8.2.3 ( Special values )
When non-trivial zeros of Riemann zeta function are X, 1y, k=1,2,3, -, the following expressions hold.
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Theorem 8.2.4
Let non-trivial zeros of Riemann zeta function are X,+1y, N=1,2,3, and ¥ be Euler-Mascheroni

constant. If the following expression holds, non-trivial zeros whose real parts is not 1/2 do not exist.

logz

5 = 0.0230957 -

- /4
=1+5-log2-
X 1ary? 1/4+yr 27

Incidentally, when this was calculated using 200000 Y, , both sides coincided with the decimal point 4 digits.

In 8.3, we show that §(Z) is factored completely.

Theorem 8.3.1 ( Factorization of £(z))

Let Riemann zeta function be £(Z) , the non-trivial zeros are Z, = X,£iy, N=1,2,3, and completed
zeta function be as follows.
z

(@ = 2007 1 5 |

Then, f(z) is factorized as follows.

@ = ][ 1m0 E
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LU X tYe X tYe

In 8.4, we first derive the factorization of E(Z) .

Theorem 8.4.1 ( Factorization of =(z) )
Let Riemann zeta function be £(Z) , the non-trivial zeros are z, = X,£iy, N=1,2,3, and completed
zeta function be as follows.

Ey
)3

Then, E(Z) is factorized as follows.
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Where, =Z(0)= = - F(—) (—) = 0.99424155 -
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And, using this theorem and Theorem 7.4.1 in the previous section, we obtaine the following theorem.

Theorem 8.4.4

When Riemann zeta function is {(z) and the non-trivial zeros sre Z, =X, £ iyn n=12,3, -,
If the following expression holds, non-trivial zeros whose real parts is not 1/2 do not exist.

1 1 r( 1 )g( 1) = 0.99424155 -
=1 1/4+y 2 a7V \ 4 2 )

Incidentally, when this was calculated using 100000 Y, , both sides coincided with the decimal point 5 digits.

09 Maclaurin Series of Completed Riemann Zeta

In 9.1, completed Riemann zeta §(Z) is expanded in Maclaurin series.

Theorem 9.1.3 ( Maclaurin series of £(Z))
Let completed Riemann zeta be
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Then, the following expression holds on the whole complex plane.
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Where, l//n(Z) is the polygamma function, Bn'k(fl , f2 , ) is Bell polynomials, }; is Stieltjes constant,
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In 9.2, completed Riemann zeta E(Z) is expanded in Maclaurin series.

Theorem 9.2.3 ( Maclaurin Series of Z'(Z))
Let completed Riemann zeta be

1
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Then, the following expression holds on the whole complex plane.
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1 1\ (1)
20)= -md Z);( 5 ) = 0.9942415563

N|

00

2@ = 2O X X D

r=0 s=0
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Where, l//n(Z) is the polygamma function, Bn'k(fl , f2 , ) is Bell polynomials, }4 is Stieltjes constant,

(E)—[r ! 5 5 5 =0
W)= Sedwl 7)ol 7)o 7)) rmrzae
1 B r=0
s )T e

The first few are as folows.
—_ —_ log 1z 9.G/D 1
=] = = + [ -

@ (O){l ( TR T A

2 5/4 ! 5/4 5/4 1
+(Iog ;;+gz( )+ log~ 7z 91 )+91( ) |Og72'1)2

221 221 2T i oiqy ol A7 o1y ©
3 5/4 2 5/4 2 5/4
_ log 7r+93( )+Cs+log7r91( )+Iog 72'01+92( )
2331 2331 2221 2111 2221 2221
_log*z 9L5/4)  log'x N 915/4)  log'z 9159 3
2l 2221 2i11 7 pipn 2T Tyl oigg B

‘o }

= 0.994242 {1. + 4.44089%107"° z + 0.0231052° + 1.38778x107° =

+

G

3

+0.000248334z"+ 2.08167x10Y" z° + 1.67435x10°% 2%
+7.37257x10 % 27 +8.0307x10°% 2% + 1.0842x 10718 2°
+2.94014x 10711 210

We can see that the coefficients of the odd degree are almost zero.

10 Vieta's Formulas on Completed Riemann Zeta

In 10.1, the relations between the zeros of completed Riemann zeta §(z) and the coefficients of the Maclaurin series
are shown by the two theorems.

Theorem 10.1.1
Let completed Riemann zeta f(Z) and the Maclaurin series are as follows.

z
(@ = 2007 21 5 )@ = $Ar
Then, these coefiicients A, r=0,1,2,3, - are given by
A = Zr 25 log"™*x (‘1)_s_tgs—t(3/2)
00 2" (r-s)1 2 (Gs-t)!
Where, l//n(Z) is the polygamma function, Bn,k(fl , f2 ) e ) is Bell polynomials, }4 is Stieltjes constant,

3 _[r s s S 1=
gr( 2) - ngr,k(l//o(g), l//l(g).... ,v/r_l(g)) r=123 -
1 r=0
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Theorem 10.1.2

Let completed Riemann zeta f(Z) and the Maclaurin series are as follows.
z

— T2 z - v r
(@ = 2007 21 5 )@ = 58,2
Then,
(1) The following expressions hold for non-trivial zeros z, = X, £iYy , Y #0 k=1,2,3, of {(@) .
"
Bi=-2 ——
ri=1 szi + yrz1
22x. X 20
S 1, &
DYDY + 2
SR. 2. 2\/. 2.2 2. 2
= ( X, + yrl) ( Xr, + y"z) = Xy + Yr,

3 1
00 00 2 Xrlxr2Xr3 00 00 2 (Xr1+ sz)

B, =

By = - -

SRR TN wre oy v Wy ey
- f . . i 24 Xp Xe Xe X,

4 r=1 r2=Zr1+1 r3=2r2+1 rg=rztl (Xr21+yr21><xr2+yr2>< F3 yr3)< P yr4)

o 22 (X Xe,  Xe Xt X X . 0
(% ) 2

ry"rs

+ Z + 2
B (Ey2) (EE) (EnE) | i (EH2) ()

2n-1
o Xrlxrz szn 1

Bon-1= 23 25 >
2 2 2 2
MLt g™t ( Xrl + yrl) ( sz + yr2> ( Ton-a yrzn 1)

2n-3
+ + o+
- i i i 2 (Xrlxrz Xy s XrXe, " Xe, X Xr, szn—z)
2. 2\ (v2, .2 2
LI T g™ (Xr1+yr1) (Xr2+yr2) ( +yr2n 2)
Y. . 24 (Xt Xt %)

r=1 r2=r1+1mrn=%_frl (Xr21+yr21) (Xr22+yr22) (Xr2n+yr2n)

5w . 22" % X, Xy
B,,= X Y Y t 2 =
2n ~ 4 - 20 02\ (w22 02) . (92 14,2
LT Tt ( Xry + yrl) ( Xr, * yrz) (szn * yrzn )
2n-2
+ + -+
5w . 2 (Xr1Xr2 X, T XX, ™ X Xe Xe. szn_l)
ta X X 292 (2 v2) - (x
ML o= (Xrl yrl) (sz yrz) ( Ton1 yr2n 1)
o 20

+r§%@§%ﬂf.r3?ﬁl<x +yﬁ)(Xé+Yé)”(Xé+Yé)

(2) When A, is a coefficient in Theorem 10.1.1, B,=A, n=1,23,

And, if Riemann Hypothesis is true, the following proposition equivalent to this must hold.

Proposition 10.1.3
When 2, =1/2 *iy, , Y, #0 (k=1,2,3,~ ) are the non-trivial zeros of Riemann zeta ¢(Z) and

-13-



Ar r=1, 2, 3, *** are constants given by Theorem 10.1.1, the following expressions hold.

» L = A, =0.0230957089--
r=1 1/4+y;
00 00 1

= Ag+ A = 0.0002481555
2 (Wany?) (van?) 2
00 00 0 1

= _Ag- 2(Ay+A;) = 0.0000016727

r;ls;rﬂ t§ﬂ(1/4+yr2)( 1/4+y52)( 1/4+yt2) 3- 2(AxtAr)
5553 -
r=1s=r+1t=s+1u=t+1 (1/4+yr2) ( 1/4+y52) ( 1/4+yt2) ( 1/4+le2)

= A, +3Ag+ 5(A+ A;) = 8.021073428x107°

Proposition 10.1.3'
2

=A? - 2(A+Ay) = 0.00003710063-

S 1
r:1( 1/4+ y,.2

M

1 3
(—) = -A? +3(A;-2)(A;+A;) -3A; = 0.00000014367786

1\ 1/4+y?

:
M 4—A“ 4A3+4A2(E A)+4A 3A, +A; -5
;1( 1/4+yr2) A 1 1 2_ 2 1( 2 3~ )

+ 2AZ - 20A, - 12A5-4A, = 6.59827915x1071°

In 10.2, the relations between the zeros of completed Riemann zeta E(Z) and the coefficients of the Maclaurin series
are shown by the two theorems.

Theorem 10.2.1
Let completed Riemann zeta E(Z) and the Maclaurin series are as follows.

20> = - 2o ) [ 2-2)a T2 {2 (1) o 22

= 2O (1+A, 22 +A, 22 +A, 2 +A, 24+

Then, these coefiicients A, r=0,1,2,3, - are given by
log™ 7 95D

_ ey r-s
A=z nED 25(@r=s)! 25 (s-1)! “
Where, l//n(Z) is the polygamma function, Bn,k(fl , f2 , ) is Bell polynomials, }4 is Stieltjes constant,
5 1 r=0
o2)={ gaW2) A3 wd ) Tran
k=1
1 r=0
= 2 & -1 (s 1\

Theorem 10.2.2
Let completed Riemann zeta E(Z) and the Maclaurin series are as follows.

20 = {30 (3-1) 7 53] J 3
:5(0)<1+Blzl+8222+BSZ3+B4Z4+---)
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Then,
(1) The following expressions hold for non-trivial zeros Z, = X, £iY, , Y =0 k=1,2,3, of {(2).

~ o (%-1/2)%+yr 1 1\ (1) _
=O=11 xe+yl a4 F( 4 );( 2 ) = 0-9942415563
5 2(%,~12)
B,= - = 2,2
r= (Xrl—]./Z) *Yr,
6w 22 X, ~1/2) (%, -1/2 - 20
=3 5 G s 2
A { (X%, =1/2)°+yp H{ (%,m1/2) +ye ) am {(x,m1/2)°+y7 )
L. 2% (%, =1/2) (%~ 1/2) (%~ 1/2)
B; =-2 X X 2, 2 2, .2 2.2
M=l rp=rytlg=ry+l {(Xfl_]'/z) +y"1}{(xr2_1/2) +y"2}{(xr3_1/2) +yr3}
S (AL -1/2)}
ri=lry=r;+1 {(Xrl—l/2)2+yr2} { (X +yr }
o . 2% (%, -1/2)( 1/2) - (%,,~1/2)
B, =
= R T e (2] (o V2]
o g _ZAR) ) 12 0 12))
+
=l ry=r+lrg=rytl { (Xrl—]/2 )2+yr21} { (sz—l/Z) +yr2} { (Xra_]jz )2+yr23}
S 2°
+ 2

r=1 r2=2r1+1 { (Xr1_1/2)2+yl’21}{ (sz_y2)2+yr22}

(2) when A, is a coefficient in Theorem 10.2.1, B,=A, n=1,2,3,.
And, if Riemann Hypothesis is true, the following proposition equivalent to this must hold.

Proposition 10.2.3
When 2, =1/2%iy, , Y, #0 (k=1,2,3, ) are the non-trivial zeros of Riemann zeta £(Z) and
Ar I‘:1, 2, 3, =+ are constants given by Theorem 10.1.1 , the following expressions hold.

1
2 — =A, =0.0231049931
ri=1 yr

1
——5 =A4 = 0.0002483340-

r=lr=r+1 Yr Yr,
00 00 00 1
——— =Ag = 0.00000167435-
r=lr=r+lrg=rp+lYr Yr, Yr,
00 00 1
Y ¥ ¥ Y —55 57 =Ag=8.030697x10°

=1 rp=r+lrg=rp*tlr=ra+1 Yr Yo, Yr Yr,

00 0 ) 1
X X v X o ThAy

==t =g * 1 Y Yr, 7 Ve,
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Proposition 10.2.3'

o 1
— =AZ-2A, = 0.00003717259-

r=1Y,

o 1

> —5 =AS-3A,A,+3As = 0.00000014417393

r=1Y

o 1

> =5 =As +2AZ —4AZA, + AAy A - 4Ag = 6.6303x1071°
r=1Y,

11 Zeros on the Critical Line of Riemann Zeta
In 11.1, substituting Z =0+iy for the completed Riemann zeta E(Z) ,
1/1 .
v (A1) FFy) a1 1,
Q) =-| Sty || 5y |7 N5ty |6l 5ty
We use this to calculate the zeros on the critical line. However, this function is too small in absolute value and can only find
the zeros up to Y =917 .

So we normalize =}, (y) and define the following sign function.

50 % F{%(%“y)}f(%“y)

sgn(y) = - EXOI ‘F{%(%Hy)};(%ﬂy)’

sgn

10} — —

10 20 3 40 0

Using this sign function sgn(y) , we can find the zeros at large Y .
However, this sign function SgN (y) has the disadvantage that it is easy to miss Lehmer's phenomenon.

In 11.2, multiplying this sign function sgn(y) by the absolute value of the Riemann zeta {(1/2+iy) , we obtain a
smooth function Z(y) .
: 1/1
gy falam)] 1,
T2
nz(z)]]

A1 s
.-3(2+.1y}| santy) sanfy) .',7G+J_V)|

| | /\ /\/\f\ A
N | =R f

20) =sin@|¢( 3+iv )| =

[

P2

10 20 30 40
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Using this Z(y) function, we can find the zeros on the critical line of C(Z) by the intersection of the curve and the Y -axis
Therefore, the risk of missing the Lehmer's phenomenon is reduced.

In 11.3, first, a lemma is prepared.
Lemma

When f(Z) is a complex function defined on the domain D , the following expression holds.

ilmlogf(@) — f(Z)

e
If@|
Applying this lemma to the gamma function in the 11.2 ,
1/1
iy F{—(—+iy)} iy . 1/1 .
- 2\ 2 1 -= |Imlogr{—(—+ly)} 1
— 2 Rl — 2 2\ 2 s
2\ 27"
From this, we obtain
i 1 1/1
AQ)) =e'9(y)g”( §+iy) where, O(y) =Im IogF{ > §+iy } - %|Ogﬂ'

This is a definitional equation of Riemann-Siegel Z function .

12 Zeros of Riemann Zeta and System of Infinite Degree Equations
In 12.1, the Riemann zeta {(1/2+2) is Laurent expanded into real and imaginary parts.

Formula 12.1.3
When the Riemann zeta functionis {(1/2+z) (z=X+iy ) and Stieltjes constansts are
Y% S =0,1,2, -, the following expressions hold on the whole complex plane except z =1/2.
1 B 1 «  (/2-1)° _ ,
d542) =g * Sr e S L@ i@
1/2 - o o @/2-x)° D'y*
= - +
U+(Xay) (1/2_X)2+y2 ;_0 S;OyZHS S 1 (zr)!
_ y S @2-x)° Dy*™
V+(X’y) - - 2. 2 ~ 24 24 02r+stl 1 2r+ 11!
@2-x)"+y =0 5=0 s! QCr+)!

Where, 0°=1 )

Formula 12.1.4
When the Riemann zeta functionis {(1/2-z) (z=X+iy ) and Stieltjes constansts are
% $=0,1,2, -, the following expressions hold on the whole complex plane except z =-1/2.
1 B 1 o (U/2+7)° :
3] =mm 2 TL @O
1/2+x s o (240° (DY
= - +
u-Goy) (1/2+)()2+y2 23 s;oj/2r+s sl !
o (1/2+X)S (_1)r 2r+1
v_(x,y) Y + 2 X Vorese1 y

) A/2+x)%+y? =050 s! QCr+D!
Where, 0°= 1 )

In 12.2, these are added and subtracted and rearranged into even and odd functions.
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Formula 12.2.1 ( Even function )

1/2 % ;25
= @29
=+
@ =7 T AT Oggn
1/4_X2+y2 © 00 (2I’+2 XZS (_1)ry2r
u.(X, = - + f X0)
o 2{ (va-x+y?)"+ ax?y?) D S TeY
2s+1 ry,2r+l
= Xy A\ g Qr+2s+2 X (—1) y
VelX, - + f 0)
N¢B)) (1/4_X2+y2)2+4xzy2 205;0 )(1(25+1)! @riD1
Formula 12.2.2 ( Odd function)
z 00 (2 1) 225+1
= _ s+ oz
0@ = T AT T O
x(1/4-x"-y”) 3 Qg (2r+2s+L X2 DTy
u,(x, = - _ f 0
o(X,y) (1/4—x2+y2)2+4x2y2 r;ogo )(/(25+1)! @1
y(1/4+X2+y2) QW g @r2s+l X% (_1)ry2r+l
V,(X, = - _ f 0
o) (1/4-x2+y?)* + ax?y? 22, )(’(25)! @r+n!

Where, in the both formulas,

w-3 22 (3] [-gadel2]] o

t=0

In 12.3, necessary and sufficient conditions for Riemann zeta to have zeros are shown.

Theorem 12.3.1
When the Riemann zeta functions are (( 1/2+7) and Stieltjes constansts are % $=0,1,2,-,
é/( 172tz ) = 0 ifand only if the following system of equations has a solution.

—x24y?2 o o 2s ANy 2T
o{ (a-x2+y?) +ax?y?} =050 @)t @)t
© o 2s+1 4\ Iy, 2r+l
Vo= - Xy . +sz(2r+25+2)(0) X ' ( 1) y ' -
(1/4—x2+y2) +4x2y2 =050 s+ @Cr+D!
A-x2-y? PR 25¢1  _qyry 2
Uy = — X(l/ X 2y ) _ Z Zf(Zr 2s 1)(0) X l ( ) y' =0
(1/4—x2+y2) +4>(2y2 e (Cs+D1 2!
2 2 © o 2s AT, 2r+L
Vo= - y(1/4+x +2y ) 33 ferezaygy X : Dy _ -0
(/4-x2+y?) +4x%y? =050 @sHr @+t
Where,
© 7/5+t l t { 00 }/ l t-s }
(S - — = t _— O:
O t:zot!(Z) Sasilz) | o=t

In 12.4, two hypotheses are presented that are equivalent to the Riemann hypothesis.

Hypothesis 12.4.1
When % $=0,1,2, - are Stieltjes constansts and X , Y are real numbers,
the following system of equations has no solution such that X # O .
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y(1/4+x>+y?) 5 ¢ x* Dy

V. = — _ Z Zf(2r+25+1)(0) -0
0 (1/4—x2+y2)2+4x2y2 =05 @2s)! @Cr+D)!
u = x(1/4-x2-y?) L $ § eraag K2 Ty .
0 (1/4-x2+y2 ) 2rax?y? 1050 7@s+D1 @2n)!
Hypothesis 12.4.2
When 7, $=0,1,2, - are Stieltjes constansts and X, Y are real numbers,
the following system of equations has no solution such that X # 0 .
1/4—x2+y2 5 © 4o XZS (_1)ry2r
Ue = - 2. 22, 22 +22f(r+5)(0)(2s)l a1 -9
2{(a-x2+y?) +ax?yy?} =050 ; i
2s+1 r.,2r+l
X 0 @ -1
Ve = - y + Z Zf(2r+25+2)(0) X Dy -0

(1/4—x2+y2)2+4x2y2 =050 @s+D1 @Cr+D)!

Where, in the both hypotheses f(s)(O) = i fon (i )t { = i L(i)t_s } 0°=1
| e 22 & -9l |

Fractional functions can be ignored when Y is large. Then, considering these partial derivatives with respect to y, it seems
likely that the above two hypotheses will hold true.

Graphical Proof of the Riemann Hypothesis
This proof is difficult to contain in one chapter, so | write it as a separate paper.

In Chapter 1, the definitions of the Riemann zeta function {(z) and the Dirichlet etar function 77(2) and the relational
expression between the two are shown. That is,

o 1 1 1 1

é/(Z) - r:le_Z|Ogr - ?+E+§+Z+ Re(Z) g 1
200 1 - 1 1 1 1

77(2) - I’:l(_:l-)r 1e Zlogr - ?_E-'-?_E-F_ Re(Z) g 0

1
@ = mﬂ(z) z71

In Chapter 2, three equivalent lemmas are presented and proven.

Lemma 2.1
When the set of real numbers is R and Dirichlet eta functionis 7(z) (z=x+iy, X,y €R),
n(z) =0 in 0 <x < 1 ifandonly if the following system of equations has a solution on the domain.

Wz =X EDTe =0 2.1,)
r=1
n(1-2) = 3 (-1 e ¢ =0 (21)
r=1
Lemma 2.1'

When the set of real numbers is R and Dirichlet eta functionis 7(z) (z=x+iy, X,y €R),
n(/2+2) =0 in -1/2 <x < 1/2 ifand only if the following system of equations has a solution on the domain.

(CA)

(3] 5 2 g
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Lemma 2.2
When the set of real numbers is R and Dirichlet eta functionis 7(z) (z=x+iy, X,y €R),

n(/2+2) =0 in -1/2 <X < 1/2 ifand only if the following system of equations has a solution
on the domain.

n.@ = 21 } cosh(zlogr) = 0 (2.2¢)
ns(2) = 21 J_ smh(zlog r)=0 (2.25)

Then, expressing Lemma 2.2 in terms of real and imaginary parts, we obtain the following theorem.

Theorem 2.3
When the set of real numbers is R and Dirichlet eta function is 77(2) = X+iy, X,y € R).
n(/2+72) =0 in -1/2 <x < 1/2 ifand only if the following system of equations has a solution on the domain.

D™

u.x,y) = g NI ———=——cosh(xlogr) cos(ylogr) =0
(_1)r 1

ve(X,y) = 1 Jr —————sinh(xlogr) sin(ylogr) =0
. (_1)r 1

usXx,y) = ;1 I sinh(xlogr) cos(ylogr) =0
(—1)“ '

vi(x,y) = > ————cosh(xlogr) sin(ylogr) =0

<‘

In Chapter 3, the amplitude of VC(X , y) with respect to Y is studied and the following law is obtained

Law 3.4.5
Let X,y are real numbers and function V(X ,Y) be as follows.
( )r 1
ve(X,y) = 21 I sinh(xlog r) sin(ylogr) (2.4c)
r=

Then, given X , the amplitude of VC(X ,y) is generally proportional to the absolute value of Y .

This law can explain that when X is given, the tips of the contour line of VC(X ,y) generally approach the Y -axis as Y
becomes larger. For example, if acontour line of height 1 of V (X,Y) is drawn for Yy =100 ~ 107 and y =3000 ~ 3007
it is as follows respectively. The left figure is Y =100 ~ 107 and the right figure is Y =3000 ~ 3007 .

vely) =1 y velxy) =1 y
107 3007

106 3006
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In Chapter 4, the amplitude of Us(X,Y) with respect to Y is studied and the following law is obtained

Law 4.4.5
Let X,Y are real numbers and function us(X,y) be as follows.

u,(x,y) = Z _} sinh(xlog r) cos(ylogr) (2.4s)

Then, given X , the amplitude of us(x ,y) is generally proportional to the absolute value of Y .

This law can explain that when X is given, the tips of the contour line of US(X ,y) generally approach the Y -axis as Y
becomes larger. For example, if acontour line of height 1 of V.(X,y) is drawn for y =100 ~ 107 and y =3000 ~ 3007
it is as follows respectively. The left figure is Y =100 ~ 107 and the right figure is Y =3000 ~ 3007 .

us(xy) = 1 i ugley) = 1

¥
3007

e R
—

104 : 3004
D -
o ( [ — —
) — ,

In Chapter 5, the contour lines of Vo(X,y) = Us(X,y) = £h (h > 0) are noticed. For example, contour lines of height
18 of Vo (X,¥),Us(X,Y) are drawn as follows. The left figure is +8 and the right figure is —8.

Ve =2 ¥ — Us= 23 Ve = 723 ¥ —_ Us :723

o

o

3

x

)

(
>

|
o

W

N

Since V:(X,¥),Us(X,y) are odd functions with respect to X , the left and right figures are mirror images with respect to
the Y -axis. Furthermore, since VC(X ,y) is odd function with respect to Y , the left and right figures are mirror images with
respect to the X -axis. Both figures can never overlap by translation or rotation in the plane.

Nevertheless, at height 0, the left and right figures have to overlap without translation or rotation. To do this, the contour
lines in both figures must deform as the height approaches +0 from above and below. And, at height 0O, both figures must
be symmetrical about both the Y -axis and the X -axis.

This forces contour lines that were alternate at height =0 to be opposite at height 0 . This also applies to the X -axis.
Thus, at height 0, the right and left edges of © < must be absorbed into the Y -axis, and the lower and upper edges of
U M must be absorbed into the X -axis. In fact, if we approach the heights of V.(X,y),Us(X,Yy) from above and below

to =0, the contour lines become ewventually as follows.

N 4
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For the animation from V.= Ug =11 to V.= Ug= 10, click here. | AnimZ5219.gif

Consistent with the theory, the contour parts asymmetric with respect to the Y and X -axis were absorbed in both axes.
As the result, an infinite number of trivial solutions (blue dots) and four non-trivial solutions (red dots) remained. The trivial

solutions are on the X -axis, and the non-trivial solutions are outside the critical strip -1/2 <x<1/2 .

Though these figures are drawn with |y | < 15, according to[Law 3.4.5and [Law 4.4.5] the right and left tips of D

are absorbed more quickly into the Y -axis where Y is large.
Thus, the system of equations V (X,Y) = U;(X,y) = O has no solution in the critical strip —1/2 <X < 1/2 except

on the critical line X =0.
In Chapter 6, by organizing and summarizing the abowve, the Riemann hypothesis is proven.

Proposition 6.1 ( Riemann Hypothesis )

Let é’(Z) be the function defined by the following Dirichlet series.

o _ 1 1 1 1
c@ = ;19 2logr = ?+?+§+Z+ Re@) > 1 (1.9)

This function has no non-trivial zeros except on the critical line Re (Z) =1/2.

Proof

The problem of finding the zeros of the Riemann zeta function g”(z) ultimately reduce to Theorem 2.3 . According to the
theorem, the fact that the Dirichlet eta function 77(2) has zeros in the critical strip is equivalent to the fact that the system
of equations U, =V, = Ug = Vg = O has solutions in the critical strip. However, as seen in Chapter 5, V. = U = O has
no solution in the critical strip except on the critical line.

So, according to Theorem 2.3, the Dirichlet eta function 77(2) has no zeros in the critical strip except on the critical line,

therefore, the Riemann zeta function g”(z) has no zeros in the critical strip except on the critical line. Q.E.D.
Analytical Proof of the Riemann Hypothesis

In Chapter 1, the definitions of the Riemann zeta function g”(z) and the Dirichlet etar function 77(2) and the relational
expression between the two are shown. That is,

o 1 1 1 1
°° 1 - 1 1 1 1
77(2) - I;l(_l)r 1e zlogr = ?_E_F?_Z.F_ Re(Z) >0
1
@ = ——1@ z71
1-2
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In Chapter 2, After going through three equivalent lemmas, we finally obtain the following theorem.

Theorem 2.3
When the set of real numbers is R and Dirichlet eta functionis 7(z) (z=x+iy, X,y €R),

n(1/2+72) =0 in -1/2 <x < 1/2 ifand only if the following system of equations has a solution on the domain.

D™

u.(x,y) = ﬁ] Jr ———=——cosh(xlogr) cos(ylogr) =0
" (_1)r 1

ve(X,y) = ;1 Jr sinh(xlogr) sin(ylogr) =0
° ( 1)r 1

u,(x,y) = gl Jr sinh(xlogr) cos(ylogr) =0
5 D™ _

vo(x,y) = ;l Jr cosh(xlogr) sin(ylogr) = 0

In Chapter 3, it is noted that the first terms (r =1) of the V (X,y) and us(x,y) series are both O. So, these first

terms are changed from I =1 to r =2, and the following lemma is proven.

Lemma 3.1
When Y is a real number, X is a real number s.t. —1/2 <X < 1/2 , the following system of equations
has no solution such that X# O .

r-1
vex,y) = X (} sinh(xlogr) sin(ylogr) =0 (3.1¢)
r=2
( )r 1
u,x,y) = 2 T ————sinh(xlogr) cos(ylogr) =0 (3.1s)
r=2
Proof (overview)
1. Integrating the series (3.1s) term by term from O to Y with respectto Y,
r-1
Ju,(x,y)dy = 2 j_ ) sinh(xlog r) sin(ylogr) (3.1sy)

The Y coordinates of the peaks and valleys of V.(X,y) and [Us(X,y)dy almost match. ("

The peaks and valleys of [Ug(X,y)dy and the zeros of Ug(X,Yy) exactly match. ( "'

sin(ylogr) is shared )

Function and its derivative )

So, the Y coordinates of the peaks and valleys of V(X,Y) and the zeros of Ug(X,Yy) almost match.

2. Integrating the series (3.1¢c) term by term from O to Y with respectto Y,

r-1
fVc(X1y)dy = 5— )

sinh(xlog r) cos(ylogr)

The Y coordinates of the peaks and valleys of Ug(X,y) and [V .(X,y)dy almost match. ("

(3.1cy)

cos(ylogr) is shared )

The peaks and valleys of [V.(X,y)dy and the zeros of V.(X,y) exactly match. ( "

Function and its derivative )

So, the Y coordinates of the peaks and valleys of Us(X,Y) and the zeros of V:(X,y) almost match.
3. As theresult of 1and 2, V(X ,Y) and Us(X ,Y) do not have common zeros in —1/2 <x< 1/2 ,x#0.

In Chapter 4, by organizing and summarizing the abowe, the Riemann hypothesis is proven.

Theorem 4.1 ( Riemann Hypothesis )
Let C(Z) be the function defined by the following Dirichlet series.
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® 1 1 1 1
¢@ = ;19 7loar = ?+§+§+Z+ Re@)>1 (1.9

This function has no non-trivial zeros except on the critical line Re (Z) =1/2.

Proof (overview)

According to |Lemma 3.1 and Theorem 2.3} 7((1/2+2) has no zeros other than X=0 in -1/2 <x< 1/2.
That is, Dirichlet eta function 77(Z) has no zeros other than X=1/2 in 0 <x< 1.
Therefore, Riemann zeta function {(Z) also has no zeros other than X=1/2 in 0 <x< 1.
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