
Summary of Riemann Zeta Function

1 Zeta Generating Functions
 Both of hyperbolic functions and trigonometric functions can be expanded to Fourier series and Taylor series. And  if the 

termwise higher order integration of these is carried out, Riemann Zeta Functions are obtained. 

  Where, these are automorphisms which are expressed by lower zetas. However, in this chapter, we stop those so far. 

The work that obtain the non-automorphism formulas by removing lower zetas from these are performed subsequent to 

Chapter2 .

  In this chapter, we obtain the following polynomials from the zeta generating functions

Where, Riemann Zeta, Dirichlet Eta and Dirichlet Lambda are as follows.
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Bernoulli numbers and Euler numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,

E0=1,  E2=-1,    E4=5,       E6=-61,    E8=1385,  
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  Furthermore, if the termwise higher order differentiation of the Fourier series of each family of tanh, cot and tan are carried
out,  the following expressions are obtained.
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Where,  nDr  are the Eulderian Numbers and Tn-1  are the tangent numbers. These are defined as follows respectively.
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2 Formulas for Riemann Zeta at natural number
  In this chapter,  removing the lower zetas from automorphism formulas in the previous  chapter,  we obtain 
non-automorphism formulas for Riemann Zeta at natural number.
Where, Bernoulli numbers and Euler numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,
E0=1,  E2=-1,    E4=5,       E6=-61,    E8=1385,  
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3 Formulas for Riemann Zeta at odd number
  In this chapter, we obtain non-automorphism formulas for Riemann Zeta at odd number. 
Where, Bernoulli numbers, Euler numbers and tangent numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30, 

E0=1,  E2=-1,    E4=5,        E6=-61,    E8=1385,  

T1=1,  T3=2,    T5=16,       T7=272 ,   T9=7936 , 
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4 Formulas for Riemann Zeta at even number
  In this chapter, we obtain non-automorphism formulas for Riemann Zeta at even number. 
Where, Bernoulli numbers and Euler numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,
E0=1,  E2=-1,    E4=5,       E6=-61,    E8=1385,  
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5 Formulas for Riemann Zeta at complex number
  In this chapter, we obtain the formulas for Riemann Zeta at a complex number  by processing  " 2 Formulas for Riemann

Zeta at natural number "

Where, Bernoulli numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,
And gamma function and incomplete gamma function are
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6 Global definition of Riemann Zeta, and generalization of related coefficients
  From Euler to Riemann, the zeta function was defined with patches as the domain was expanded.

( )p  = 
Σ
r=1



rp

1
   Re( )p >1       

1-21-p

1
Σ
r=1



rp

( )-1 r-1

    
0 Re( )p  1
p 1   

( )2 1-p

2( )1-p
sin 2

p
1-2p

1
Σ
r=1



r1-p

( )-1 r-1

    
Re( )p  0
p 0   

 

This is inconvenient. so, we focus on the following sequence.

 nBr  = Σ
s=1

r

( )-1 r-s 
r

s
sn r=0,1,2,,n

Using this sequence, we can define the Zeta function on the whole complex plane as follows.

Definition 6.2.1
  We difine the Riemann Zeta Function on the complex plane as follows.

( )p  = 
1- 21-p

1
Σ
r=1



2r+1

1
Σ
s=1

r

( )-1 s-1 
r

s
s-p p1

  Furthermore, by using this sequence, the following various coefficients can be generalized.

Generalized Stirling Number of the 2nd kind

 S2( )p , r  = 
r!
1
Σ
s=1


( )-1 s-1 

r

s
sp r=1,2,3,

Generalized Tangent Number

Tp  =  
 0      p =0

Σ
r=1


2p-r

Σ
s=1

r

( )-1 s-1 
r

s
sp p0

Generalized Bernoulli Number

Bp  =  
-

2
1

                                                      p = 1

2p-1

p
Σ
r=1



2r+1

1
Σ
s=1

r

( )-1 s-1 
r

s
sp-1 p  1

7 Completed Riemann Zeta
  In 7.1,  we consider even function and odd function for complex function. Generally, we obtain the same results as for 
real-valued functions, but the results unique to complex-valued functions are as follows.

Theorem 7.1.3

  Let f( )z be a complex function in the domain D .

(1)  If  f( )z is an even function , both the real part and the imaginary part are even functions.

(2)  If  f( )z is an odd function , both the real part and the imaginary part are odd functions.
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Theorem 7.1.4

  Let f( )z be a complex function in the domain D .  Then,

 if f( )z  is an even function or an odd function ,  f( )z 2
 is an even function.

  In 7.2,  we study complex conjugate properties. Especially when the function f( )z  is an even function or an odd function

with complex conjugate properties, two important theorems are obtained.

Theorem 7.2.3

  When f( )x,y =u( )x,y + iv( )x,y is a function with the complex conjugate property in the domain D ,

(1)  if  f( )x,y is an even function,

u( )x,y  =   u( )x,-y  =   u( )-x,y  = u( )-x,-y
v( )x,y  = -v( )x,-y  = -v( )-x,y  = v( )-x,-y

(2)  if  f( )x,y is an odd function,

u( )x,y  =   u( )x,-y  = -u( )-x,y  = -u( )-x,-y
v( )x,y  = -v( )x,-y  =    v( )-x,y  = -v( )-x,-y

Corollary 7.2.3

  Let f( )x,y =u( )x,y + iv( )x,y be a function with the complex conjugate property in the domain D .

Then, the followings hold for any real number x ,y  D .

(1)  When f( )x,y is an even function , v( )x,0 =0   , v( )0,y = 0 .

(2)  When f( )x,y is an odd function  , u( )0,y = 0   , v( )x,0 =0 .

Theorem 7.2.4

  When f( )z is a function with the complex conjugate property in the domain D  and has a zero

z1 = x1+ iy1   x1  0 ,

(1)  if  f( )z is an even function,  -x1- iy1  ,  x1- iy1  ,  -x1+ iy1  are also zeros of  f( )z .

(2)  if  f( )z is an odd function,  -x1-iy1  ,  x1- iy1  ,  -x1+ iy1  are also zeros of  f( )z .

  In 7.3,  symmetric functional equations are derived from functional equations.

Formula 7.3.1 (Riemann)


-

2
z

 2
z

( )z  = 
-

2
1-z

 2
1-z

( )1-z z 0 ,1


-

2
1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z  = 

-
2
1
 2

1
- z

 2
1
 2

1
-z  2

1
-z

Where, z 1/2

  In 7.4,  we define the completed Riemann zeta functions ( )z , ( )z  as follows, respectively. These are a little different
from Landau's definition.

( )z  = -z( )1-z 
- 2

z

 2
z ( )z

( )z  = - 2
1

+z  2
1

-z 
- 2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

Then, the following equations hold from  Formula 7.3.1 .

( )z  = ( )1-z

( )z  = ( )-z

  From the latter, we can see that ( )z  is an even function.  Therefore, Thoerem 7.2.3 (1) and Corollary 7.2.3  hold for

the real part u( )x,y  and the imaginary part v( )x,y  of ( )z as they are. And from Theorem 7.2.4 , the following very

important theorem is obtained.
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Theorem 7.4.1 

 If Riemann zeta function ( )z has a non-trivial zero whose real part is not 1/2 , the one set consists of

the following four.

1/2+1  i1 , 1/2-1  i1 ( 0 < 1 < 1/2 )

08 Factorization of Completed Riemann Zeta
  In 8.1,  the following Hadamard product is shown.

Formula 8.1.1 ( Hadamard product of ( )z  )
  Let completed zeta function be as follows.

( )z  = -z( )1-z 
- 2

z

 2
z ( )z

When non-trivial zeros of ( )z  are zk = xk  i yk   k =1,2,3,  and   is Euler-Mascheroni constant,

( )z  is expressed by the Hadamard product as follows.

( )z  = e
 log2 + 2

log
 -1- 2


z

Π
k=1



 1-
zk

z
e

zk

z

( )z  = e
 log2 + 2

log
-1- 2


z

Π
n =1



 1-
xn

2 + yn
2

2xn z
+

xn
2+ yn

2

z2

e
xn

2 + yn
2

2xn z

And, the following special values are obtained.

Π
n =1



 1-
xn

2 + yn
2

2xn-1
e

xn
2 + yn

2

2xn

 = e
1+ 2


- log2 - 2

log

 = 1.02336448

Π
n =1



 1-
 xn  iyn

2

1

 1-
 xn  iyn

2

1
 = 3



  In 8.2,  we consider how the formulas in the previous section are expressed  when non-trivial zeros whose real part is 1/2

and non-trivial zeros whose real part is not 1/2  are mixed. Then, we obtain the following theorems.

Theorem 8.2.2

  Let   be Euler-Mascheroni constant, non-trivial zeros of Riemann zeta function are xn+ i yn    n =1,2,3, . 

Among them, zeros whose real part is 1/2 are 1/2 i yr   r =1,2,3,  and zeros whose real parts is not 1/2

are 1/2s  is   0 < s < 1/2    s =1,2,3, .  Then the following expressions hold.

Π
n =1



 1-
xn

2+ yn
2

2xn-1
 = 1

Σ
n =1



xn
2+ yn

2

2xn
 = Σ

r =1



1/4+ yr
2

1
 + Σ

s =1  1/2s
2s

2

12s
+
 1/2s

2s
2

12s

Σ
n =1



xn
2+ yn

2

2xn
 = 1+

2


- log 2-
2

log
 = 0.0230957

Formula 8.2.3 ( Special values )

  When non-trivial zeros of Riemann zeta function are xk  i yk   k =1,2,3, , the following expressions hold.

Π
n =1



 1-
xn  iyn

1
 1-

xn  iyn

1
 = 1

Π
n =1



 1+
xn  iyn

1
 1+

xn  iyn

1
 = 3
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Theorem 8.2.4

  Let non-trivial zeros of  Riemann zeta function are xn+ i yn    n =1,2,3,  and    be Euler-Mascheroni

constant.  If  the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.

Σ
r =1



1/4+ yr
2

1
 = 1+

2


- log 2-
2

log
 = 0.0230957

Incidentally, when this was calculated using 200000 yr , both sides coincided with the decimal point 4 digits.

  In 8.3,  we show that ( )z  is factored completely.

Theorem 8.3.1 ( Factorization of ( )z )

 Let Riemann zeta function be ( )z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed

 zeta function be as follows.

( )z  = -z( )1-z 
- 2

z

 2
z ( )z

Then, ( )z  is factorized as follows.

( )z  = Π
n =1



 1-
xn

2 + yn
2

2xn z
+

xn
2+ yn

2

z2

  In 8.4,  we first derive the factorization of ( )z .

Theorem 8.4.1 ( Factorization of ( )z )

 Let Riemann zeta function be ( )z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed

 zeta function be as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2
1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

Then, ( )z  is factorized as follows.

( )z  = ( )0 Π
n =1



 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

    Where, ( )0 = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.99424155

And, using this theorem and Theorem 7.4.1 in the previous section,  we obtaine the following theorem.

Theorem 8.4.4

  When Riemann zeta function is ( )z  and the non-trivial zeros sre zn = xn  iyn   n =1,2,3, ,

If  the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.

Π
r=1



1/4+ yr
2

yr
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.99424155

Incidentally, when this was calculated using 100000 yr , both sides coincided with the decimal point 5 digits.

09 Maclaurin Series of Completed Riemann Zeta

  In 9.1,  completed Riemann zeta ( )z  is expanded in Maclaurin series.

Theorem 9.1.3 ( Maclaurin series of ( )z )

  Let completed Riemann zeta be
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( )z  = -z( )1-z 
- 2

z

 2
z ( )z

Then, the following expression holds on the whole complex plane.

( )z  = Σ
r=0



Σ
s=0

r

Σ
t=0

s

2r-s ( )r -s !

log r-s
2s-t ( )s -t !

( )-1 s-t gs-t ( )3/2
ct z

r

Where, n ( )z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

cr  = 
1 r = 0

-
( )r -1 !

r-1
r = 1,2,3,

  The first few are as folows.

( )z  = 1 +  211!

log 1
 - 

211!

g1 ( )3/2
 - 0!

0
z1

     +  222!

log 2
 + 

222!

g2 ( )3/2
 - 

1!

1

     - 
211!

log 1
211!

g1 ( )3/2
 + 

211!

g1 ( )3/2

0!
0

 - 
211!

log 1
0!
0

z2

     +  233!

log 3
 - 

233!

g3 ( )3/2
 - 2!

2

    - 
222!

log 2
211!

g1 ( )3/2
 - 

222!

log 2
0!

0
 - 

222!

g2 ( )3/2

0!

0

    + 
211!

log 1
222!

g2 ( )3/2
 - 

211!

log 1
1!

1
 + 

211!

g1 ( )3/2

1!

1

    + 
211!

log 1
211!

g1 ( )3/2

0!
0

z3

     +
     

 

  In 9.2,  completed Riemann zeta( )z  is expanded in Maclaurin series.

Theorem 9.2.3 ( Maclaurin Series of  ( )z )

  Let completed Riemann zeta be

( )z  = - 2
1

+z  2
1

-z 
- 2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

Then, the following expression holds on the whole complex plane.

( )z  = ( )0 Σ
r=0



Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t ( )5/4
ct z

r

( )0 = -
41/4

1
 4

1
 2

1
 = 0.9942415563
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Where, n ( )z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

       r = 1,2,3,

cr  = 
1 r = 0

( )1/2

2
Σ
s=r


( )-1 r 

( )s -1 !

s-1

 
s
r  2

1 s-r 

r = 1,2,3,

  The first few are as folows.

( )z  = ( )0 1 +  -
211!

log 1
+

211!

g1( )5/4
+ c1 z1

    +  222!

log 2
+

222!

g2( )5/4
+ c2 - 211!

log 1
211!

g1( )5/4
+

211!

g1( )5/4
c1 - 211!

log 1
c1 z2

    + -
233!

log 3 +
233!

g3( )5/4
+ c3 + 222!

log 2
211!

g1( )5/4
+

222!

log 2
c1+

222!

g2( )5/4
c1

    -
211!

log 1
222!

g2( )5/4
-

211!

log 1
c2 + 211!

g1( )5/4
c2 - 211!

log 1
211!

g1( )5/4
c1 z3

    +   
 

 

 

  We can see that the coefficients of the odd degree are almost zero.

10 Vieta's Formulas on Completed Riemann Zeta

  In 10.1,  the relations between the zeros of completed Riemann zeta ( )z and the coefficients of the Maclaurin series
are shown by the two theorems.

Theorem 10.1.1

  Let completed Riemann zeta ( )z  and the Maclaurin series are as follows.

( )z  = -z( )1-z 
- 2

z

 2
z ( )z  = Σ

r=0


Ar z

r

Then, these coefficients Ar   r =0,1,2,3,  are given by

r = Σ
s=0

r

Σ
t=0

s

2r-s ( )r -s !

log r-s
2s-t ( )s -t !

( )-1 s-t gs-t ( )3/2
ct

Where, n ( )z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

cr  = 
1 r = 0

-
( )r -1 !

r-1
r = 1,2,3,
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 Theorem 10.1.2

  Let completed Riemann zeta ( )z  and the Maclaurin series are as follows.

( )z  = -z( )1-z 
- 2

z

 2
z ( )z  = Σ

r=0


Br z

r

Then,

(1) The following expressions hold for non-trivial zeros zk = xk  i yk  , yk  0  k =1,2,3,  of ( )z .

B1 = -Σ
r1=1



xr1

2+ yr1

2

2xr1

B2 =  Σ
r1=1



Σ
 r2=r1+1



 xr1

2+ yr1

2
 xr2

2 + yr2

2

22 xr1
xr2

 + Σ
r1=1



xr1

2 + yr1

2

20

B3 = -Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



 xr1

2+ yr1

2
 xr2

2+ yr2

2
 xr3

2+ yr3

2

23 xr1
xr2

xr3  -Σ
r1=1



Σ
 r2=r1+1



 xr1

2 + yr1

2
 xr2

2 + yr2

2

21
 xr1

+ xr2

B4 =  Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



 xr1

2+ yr1

2
 xr2

2+ yr2

2
 xr3

2 + yr3

2
 xr4

2 + yr4

2

24xr1
xr2

xr3
xr4

  + Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



 xr1

2+ yr1

2
 xr2

2 + yr2

2
 xr3

2 + yr3

2

22
 xr1

xr2 + xr1 
xr3 

+ xr2
xr3

 + Σ
r1=1



Σ
 r2=r1+1



 xr1

2 + yr1

2
 xr2

2 + yr2

2

20



B2n-1 = -Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n-1=r2n-2+1



 xr1

2 + yr1

2
 xr2

2+ yr2

2   xr2n-1

2 + yr2n-1

2

22n-1 xr1
xr2
 xr2n-1

- Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n-2=r2n-3+1



 xr1

2+ yr1

2
 xr2

2+ yr2

2   xr2n-2

2 + yr2n-2

2

22n-3
 xr1

xr2
xr2n-3

+ xr1
xr2
xr2n-2

++ xr2
xr3
xr2n-2



- Σ
r1=1



Σ
 r2=r1+1


 Σ

 rn=rn-1+1



 xr1

2 + yr1

2
 xr2

2 + yr2

2   xrn

2 + yrn

2

21
 xr1

+ xr2
+  + xrn

B2n =  Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n=r2n-1+1



 xr1

2+ yr1

2
 xr2

2 + yr2

2   xr2n

2 + yr2n

2

22n xr1
xr2
 xr2n

+ Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n-1=r2n-2+1



 xr1

2 + yr1

2
 xr2

2 + yr2

2   xr2n-1

2 + yr2n-1

2

22n-2
 xr1

xr2  xr2n-2
+ xr1

xr2  xr2n-1
+  + xr2

xr3  xr2n-1

 

+ Σ
r1=1



Σ
 r2=r1+1


 Σ

 rn=rn-1+1



 xr1

2+ yr1

2
 xr2

2+ yr2

2  xrn

2 + yrn

2

20

(2) When An  is a coefficient in  Theorem 10.1.1 ,  Bn = An    n =1,2,3, .

  And,  if Riemann Hypothesis is true,  the following proposition equivalent to this must hold.

Proposition 10.1.3

  When zk =1/2  i yk  ,  yk  0 ( ) k =1,2,3,  are the non-trivial zeros of Riemann zeta ( )z  and
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Ar   r=1,2,3,  are constants given by Theorem 10.1.1 , the following expressions hold.

Σ
r=1



1/4+ yr
2

1
 = -A1 = 0.0230957089

Σ
r=1



Σ
 s=r+1



 1/4+yr
2  1/4+ys

2

1
 = A2 + A1 = 0.0002481555

Σ
r=1



Σ
 s=r+1



Σ
  t=s+1



 1/4+yr
2
 1/4+ys

2
 1/4+yt

2

1
 = -A3 - 2 A2 + A1  = 0.0000016727

Σ
r=1



Σ
 s=r+1



Σ
 t=s+1



Σ
 u=t+1



 1/4+ yr
2
 1/4+ ys

2
 1/4+ yt

2
 1/4+ yu

2

1

= A4 +3A3 + 5 A2 + A1  = 8.02107342810-9

Proposition 10.1.3'

Σ
r=1



 1/4+ yr
2

1 2

 = A1
2 - 2 A1 + A2  = 0.00003710063

Σ
r=1



 1/4+ yr
2

1 3

 =  -A1
3 + 3 A1-2  A1+A2  -3A3 = 0.00000014367786

Σ
r=1



 1/4+ yr
2

1 4

 = A1
4 - 4A1

3 + 4A1
2  2

5
- A2 + 4A1 3A2 + A3 -5

  + 2A1
2 - 20A2 - 12A3 -4A4 = 6.5982791510-10

  In 10.2,  the relations between the zeros of completed Riemann zeta( )z and the coefficients of the Maclaurin series
are shown by the two theorems.

Theorem 10.2.1

  Let completed Riemann zeta ( )z  and the Maclaurin series are as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2
1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

    = ( )0  1+A1 z
1 +A2 z

2 +A3 z
3 +A4 z

4 +

Then, these coefficients Ar   r =0,1,2,3,  are given by

Ar = Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t ( )5/4
ct

Where, n ( )z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

       r = 1,2,3,

cr  = 
1 r = 0

( )1/2

2
Σ
s=r


( )-1 r 

( )s -1 !

s-1

 
s
r  2

1 s-r 

r = 1,2,3,

Theorem 10.2.2

  Let completed Riemann zeta ( )z  and the Maclaurin series are as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2
1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z

    = ( )0  1+B1 z
1 +B2 z

2 +B3 z
3 +B4 z

4 +
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Then,

(1) The following expressions hold for non-trivial zeros zk = xk  i yk  , yk  0  k =1,2,3,  of ( )z .

( )0 = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.9942415563

B1 = -Σ
r1=1



 xr1
-1/2

2+ yr1

2

2 xr1
-1/2

B2 =  Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2
  xr2

-1/2 2+ yr2

2

22 
 xr1

-1/2  xr2
-1/2
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r1=1



  xr1
-1/2 2+ yr1

2

20
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Σ
 r2=r1+1



Σ
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-1/2 2+ yr1

2
  xr2

-1/2 2+ yr2

2
  xr3

-1/2 2+ yr3

2
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-1/2  xr3
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-Σ
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Σ
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  xr1
-1/2 2+ yr1

2
  xr2

-1/2 2+ yr2

2
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-1/2 + xr2
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B4 =  Σ
r1=1



Σ
 r2=r1+1


 Σ

 r4=r3+1
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-1/2 2+ yr1

2
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-1/2 2+ yr2
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2

24
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+ Σ
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Σ
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Σ
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2
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-1/2 2+ yr2

2
  xr3

-1/2 2+ yr3

2

22
  xr1

-1/2  xr2
-1/2 +  + xr2

-1/2  xr3
-1/2

+ Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2
  xr2

-1/2 2+ yr2

2

20

     

(2) When An  is a coefficient in  Theorem 10.2.1 ,  Bn = An    n =1,2,3, .

  And,  if Riemann Hypothesis is true,  the following proposition equivalent to this must hold.

Proposition 10.2.3

  When zk =1/2  i yk  ,  yk  0 ( ) k =1,2,3,  are the non-trivial zeros of Riemann zeta ( )z  and

Ar   r=1,2,3,  are constants given by Theorem 10.1.1 , the following expressions hold.

Σ
r1=1



yr1

2

1
 = A2 = 0.0231049931

Σ
r1=1



Σ
 r2=r1+1



yr1

2 yr2

2

1
 = A4 = 0.0002483340

Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



yr1

2 yr2

2 yr3

2

1
 = A6 = 0.00000167435

Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



yr1

2 yr2

2 yr3

2yr4

2

1
 = A8 = 8.03069710-9



Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n=r2n-1+1



yr1

2 yr2

2  yr2n

2

1
 = A2n 
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Proposition 10.2.3'

Σ
r=1



yr
4

1
 = A2

2 -2A4 = 0.00003717259

Σ
r=1



yr
6

1
 = A2 

3 -3A2 A4 +3A6 = 0.00000014417393

Σ
r=1



yr
8

1
 = A2 

4 + 2A4 
2 - 4A2

2 A4 + 4A2 A6 - 4A8 = 6.630310-10

11 Zeros on the Critical Line of Riemann Zeta

  In 11.1,  substituting z =0+iy  for the completed Riemann zeta( )z ,

h( )y  = - 2
1

+iy  2
1

-iy 
- 2

1
 2

1
+iy

 2
1
 2

1
+iy  2

1
+iy

We use this to calculate the zeros on the critical line. However, this function is too small in absolute value and can only find 

the zeros up to y =917 .

  So we normalize h( )y  and define the following sign function.

sgn( )y  = -
 h( )y

h( )y
 = 

- 2
i y

  2
1
 2

1
+i y  2

1
+i y

 2
1
 2

1
+i y  2

1
+i y

Using this sign function sgn( )y , we can find the zeros at large y . 

However, this sign function sgn( )y  has the disadvantage that it is easy to miss Lehmer's phenomenon.

  In 11.2,  multiplying this sign function sgn( )y by the absolute value of the Riemann zeta ( )1/2+i y ,  we obtain a

smooth function Z( )y .

Z( )y   = sgn( )y   2
1

+ iy  = 
- 2

i y

  2
1
 2

1
+i y

 2
1
 2

1
+i y

 2
1

+i y
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 Using this Z( )y function,  we can find the zeros on the critical line of ( )z  by the intersection of the curve and the y -axis

Therefore, the risk of missing the Lehmer's phenomenon is reduced.

  In 11.3,  first, a lemma is prepared.

Lemma

  When f( )z is a complex function defined on the domain D ,  the following expression holds.

ei Im log f ( )z  = 
 f( )z

f( )z

Applying this lemma to the gamma function in the 11.2 ,

Z( )y  = 
- 2

i y

  2
1
 2

1
+i y

 2
1
 2

1
+i y

 2
1

+i y  = 
- 2

i y

e
i Im log  2

1
 2

1
+i y

 2
1

+i y

From this,  we obtain

Z( )y  = ei ( )y  2
1

+i y where,  ( )y  = Im log 2
1
 2

1
+i y  - 2

y
log

This is a definitional equation of Riemann-Siegel Z function .

12 Zeros of Riemann Zeta and System of Infinite Degree Equations

  In 12.1,  the Riemann zeta ( )1/2z  is Laurent expanded into real and imaginary parts.

Formula 12.1.3

  When the Riemann zeta function is  1/2+z   ( ) z = x +i y  and  Stieltjes constansts are

s   s =0,1,2, ,  the following expressions hold on the whole complex plane except z =1/2 .

 2
1

+z  = - 1/2-z
1

 + Σ
s=0


s s!

( )1/2-z s

 = u+( )z + i v+( )z

u+( )x,y  = -
( )1/2-x 2+y2

1/2-x
 + Σ

r=0



Σ
s=0


2r+s s!

( )1/2-x s

( )2r !
( )-1 r y2r

v+( )x,y  = -
( )1/2-x 2+y2

y
 - Σ

r=0



Σ
s=0


2r+s+1 s!

( )1/2-x s

( )2r+1 !
( )-1 r y2r+1

Where, 00 = 1  )

Formula 12.1.4

  When the Riemann zeta function is  1/2-z   ( ) z = x +i y  and  Stieltjes constansts are

s   s =0,1,2, ,  the following expressions hold on the whole complex plane except z =-1/2 .

 2
1

-z  = - 1/2+z
1

 + Σ
s=0


s s!

( )1/2+z s

 = u-( )z + i v-( )z

u-( )x,y  = -
( )1/2+x 2+y2

1/2+x
 + Σ

r=0



Σ
s=0


2r+s s!

( )1/2+x s

( )2r !
( )-1 r y2r

v-( )x,y  = 
( )1/2+x 2+y2

y
 + Σ

r=0



Σ
s=0


2r+s+1 s!

( )1/2+x s

( )2r+1 !
( )-1 r y2r+1

Where, 00 = 1  )

  In 12.2,  these are added and subtracted and rearranged into even and odd functions.
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Formula 12.2.1 ( Even function )

e( )z  = -
1/4-z2

1/2
 + Σ

s=0


f( )2s
0 ( )2s !

z2s

ue( )x ,y  = -
2  1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

( )2s !
x 2s

( )2r !
( )-1 r y 2r

ve( )x ,y  = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 + Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

( )2s +1 !
x 2s+1

( )2r +1 !
( )-1 r y 2r+1

Formula 12.2.2 ( Odd function )

o( )z  = -
1/4-z2

z
 - Σ

s=0


f( )2s+1

0 ( )2s+1 !
z2s+1

uo( )x ,y  = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s +1 !
x 2s+1

( )2r !
( )-1 r y 2r

vo( )x ,y  = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s !
x 2s

( )2r +1 !
( )-1 r y 2r+1

Where, in the both formulas,

f  ( )s ( )0  = Σ
t=0



t!

s+t 

 2
1 t

  = Σ
t=s



( )t -s !

t 

 2
1 t-s

 , 00 = 1

  In 12.3,  necessary and sufficient conditions for Riemann zeta to have zeros are shown.

Theorem 12.3.1

  When the Riemann zeta functions are  1/2z  and  Stieltjes constansts are s   s =0,1,2, ,

 1/2z  = 0   if and only if  the following system of equations has a solution. 

   

ue =  -
2  1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

( )2s !
x 2s

( )2r !
( )-1 r y 2r

 = 0 

ve =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 +Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

( )2s +1 !
x 2s+1

( )2r +1 !
( )-1 r y 2r+1

 = 0

uo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s +1 !
x 2s+1

( )2r !
( )-1 r y 2r

 = 0

vo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s !
x 2s

( )2r +1 !
( )-1 r y 2r+1

 = 0

Where,

f  ( )s ( )0  = Σ
t=0



t!

s+t 

 2
1 t

  = Σ
t=s



( )t -s !

t 

 2
1 t-s

 , 00 = 1

  In 12.4,  two hypotheses are presented that are equivalent to the Riemann hypothesis.

Hypothesis 12.4.1

  When s   s =0,1,2,  are Stieltjes constansts and x , y are real numbers,

the following system of equations has no solution such that x  0 .
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vo = -

 1/4-x 2 + y 2 2 
+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s !
x 2s

( )2r +1 !
( )-1 r y 2r+1

 = 0

uo = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

( )2s +1 !
x 2s+1

( )2r !
( )-1 r y 2r

 = 0

Hypothesis 12.4.2

  When s   s =0,1,2,  are Stieltjes constansts and x , y are real numbers,

the following system of equations has no solution such that x  0 .


ue =  -

2  1/4-x 2 + y 2 2 
+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

( )2s !
x 2s

( )2r !
( )-1 r y 2r

 = 0 

ve =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 + Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

( )2s +1 !
x 2s+1

( )2r +1 !
( )-1 r y 2r+1

 = 0

Where, in the both hypotheses,  f  ( )s ( )0  = Σ
t=0



t !

s+t 

 2
1 t

  = Σ
t=s



( )t -s !

t 

 2
1 t-s

 , 00 = 1

  Fractional functions can be ignored when y  is large. Then, considering these partial derivatives with respect to y, it seems
likely that the above two hypotheses will hold true.

Graphical Proof of the Riemann Hypothesis
  This proof is difficult to contain in one chapter, so I write it as a separate paper.

  In Chapter 1,  the definitions of the Riemann zeta function ( )z  and the Dirichlet etar function ( )z and the relational

expression between the two are shown. That is,

( )z  = Σ
r=1


e-z log r = 

1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re( )z  > 1

( )z  = Σ
r=1


( )-1 r-1e-z log r = 

1z

1
-

2z

1
+

3z

1
-

4z

1
+-  Re( )z  > 0

( )z  = 
1-21-z

1
( )z z1

  In Chapter 2, three equivalent lemmas are presented and proven.

Lemma 2.1

  When the set of real numbers is R  and Dirichlet eta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )z  = 0  in 0 < x < 1   if and only if  the following system of equations has a solution on the domain.


( )z   = Σ

r=1


( )-1 r-1 e-z log r   = 0 (2.1+)

( )1-z  = Σ
r=1


( )-1 r-1 e-( )1-z  log r = 0 (2.1-)

Lemma 2.1'

  When the set of real numbers is R  and Dirichlet eta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


 2

1
+z  = Σ

r=1



r

( )-1 r-1

e-z log r = 0 (2.1'+)

 2
1

-z  = Σ
r=1



r

( )-1 r-1

ez log r = 0 (2.1'-)
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Lemma 2.2

  When the set of real numbers is R  and Dirichlet eta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution

on the domain.


c( )z  = Σ

r=1



r

( )-1 r-1

cosh( )zlog r  = 0 (2.2c )

s( )z  = Σ
r=1



r

( )-1 r-1

sinh( )zlog r  = 0 (2.2s )

 Then, expressing Lemma 2.2 in terms of real and imaginary parts, we obtain the following theorem.

Theorem 2.3

  When the set of real numbers is R  and Dirichlet eta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


uc( )x,y  =  Σ

r=1



r

( )-1 r-1

cosh( )xlog r  cos( )ylog r  = 0

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0

vs( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  sin( )ylog r  = 0

  In Chapter 3, the amplitude of vc( )x , y  with respect to y  is studied and the following law is obtained

Law 3.4.5

  Let x ,y  are real numbers and function vc( )x ,y be as follows.

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r (2.4c)

Then,  given x ,  the amplitude of vc( )x ,y  is generally proportional to the absolute value of y .

  This law can explain  that when x  is given, the tips of the contour line of vc( )x ,y generally approach the y -axis as y

becomes larger. For example, if a contour line of height 1 of vc( )x ,y is drawn for y =100107  and y =30003007

it is as follows respectively. The left figure is y =100107  and the right figure is y =30003007 .
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  In Chapter 4, the amplitude of us( )x , y  with respect to y  is studied and the following law is obtained

Law 4.4.5
  Let x ,y  are real numbers and function us( )x ,y be as follows.

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r (2.4s)

Then,  given x ,  the amplitude of us( )x ,y  is generally proportional to the absolute value of y .

  This law can explain  that when x  is given, the tips of the contour line of us( )x ,y generally approach the y -axis as y

becomes larger. For example, if a contour line of height 1 of vc( )x ,y is drawn for y =100107  and y =30003007

it is as follows respectively. The left figure is y =100107  and the right figure is y =30003007 .

  In Chapter 5, the contour lines of vc( )x ,y = us( )x ,y = h  ( )h  0  are noticed. For example,  contour lines of height

8 of vc( )x ,y ,us( )x ,y are drawn as follows. The left figure is +8  and the right figure is -8 .

  Since vc( )x ,y ,us( )x ,y  are odd functions with respect to x , the left and right figures are mirror images with respect to

the y -axis. Furthermore, since vc( )x ,y is odd function with respect to y , the left and right figures are mirror images with

respect to the x -axis. Both figures can never overlap by translation or rotation in the plane.

  Nevertheless, at height 0 , the left and right figures have to overlap without translation or rotation. To do this, the contour

lines in both figures must deform as the height approaches 0  from above and below. And, at height 0 , both figures must

be symmetrical about both the y -axis and the x -axis. 

  This forces contour lines that were alternate at height 0  to be opposite at height 0 . This also applies to the x -axis.

Thus, at height 0 , the right and left edges of     must be absorbed into the y -axis,  and the lower and upper edges of

    must be absorbed into the x -axis. In fact, if we approach the heights of vc( )x ,y ,us( )x ,y from above and below

to 0 ,  the contour lines become eventually as follows.
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For the animation from vc = us = 1  to vc = us = 0 ,  click here.  AnimZ5219.gif 

Consistent with the theory, the contour parts asymmetric with respect to the y and x -axis  were absorbed in both axes.

As the result, an infinite number of trivial solutions (blue dots) and four non-trivial solutions (red dots) remained.  The trivial

solutions are on the x -axis, and the non-trivial solutions are outside the critical strip -1/2 < x < 1/2  .

Though these figures are drawn with | |y  15 , according to Law 3.4.5 and Law 4.4.5, the right and left tips of   
are absorbed more quickly into the y -axis where y  is large.

Thus, the system of equations vc( )x ,y  = us( )x ,y  = 0  has no solution in the critical strip -1/2 < x < 1/2  except

on the critical line x =0 .

  In Chapter 6, by organizing and summarizing the above, the Riemann hypothesis is proven.

Proposition 6.1 ( Riemann Hypothesis )

Let ( )z  be the function defined by the following Dirichlet series.

( )z  = Σ
r=1


e-z log r =

1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re( )z  > 1 (1.)

This function has no non-trivial zeros except on the critical line Re( )z =1/2 .

Proof

The problem of finding the zeros of the Riemann zeta function ( )z ultimately reduce to  Theorem 2.3 .  According to the

theorem,  the fact that the Dirichlet eta function( )z has zeros in the critical strip is equivalent to the fact that the system

of equations uc = vc = us = vs = 0  has solutions in the critical strip. However, as seen in Chapter 5, vc = us = 0  has

no solution in the critical strip except on the critical line.

So, according to Theorem 2.3, the Dirichlet eta  function( )z has no zeros in the critical strip except on the critical line,

therefore, the Riemann zeta function( )z has no zeros in the critical strip except on the critical line.  Q.E.D.

Analytical Proof of the Riemann Hypothesis

In Chapter 1,  the definitions of the Riemann zeta function ( )z  and the Dirichlet etar function ( )z and the relational

expression between the two are shown. That is,

( )z  = Σ
r=1


e-z log r =

1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re( )z  > 1

( )z  = Σ
r=1


( )-1 r-1e-z log r = 

1z

1
-

2z

1
+

3z

1
-

4z

1
+-  Re( )z  > 0

( )z  = 
1-21-z

1
( )z z1
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  In Chapter 2, After going through three equivalent lemmas, we finally obtain the following theorem.

Theorem 2.3

  When the set of real numbers is R  and Dirichlet eta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


uc( )x,y  =  Σ

r=1



r

( )-1 r-1

cosh( )xlog r  cos( )ylog r  = 0

vc( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0

us( )x,y  =  Σ
r=1



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0

vs( )x,y  =  Σ
r=1



r

( )-1 r-1

cosh( )xlog r  sin( )ylog r  = 0

  In Chapter 3, it is noted that the first terms  r =1  of the vc( )x,y and us( )x,y  series are both 0 .  So, these first

terms are changed from r =1  to r =2 ,  and the following lemma is proven.

Lemma 3.1
  When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations

has no solution such that x 0 .


vc( )x,y  =  Σ

r=2



r

( )-1 r-1

sinh( )xlog r  sin( )ylog r   = 0     (3.1c )

us( )x,y  =  Σ
r=2



r

( )-1 r-1

sinh( )xlog r  cos( )ylog r  = 0     (3.1s )

Proof (overview)
1. Integrating the series (3.1s)  term by term from 0  to y  with respect to y , 

∫us( )x,y dy = Σ
r=2



r  log r

( )-1 r-1

sinh( )xlog r  sin( )ylog r     (3.1sy)

The y coordinates of the peaks and valleys of vc( )x ,y and ∫us( )x ,y dy almost match. (  sin( )y log r is shared )

The peaks and valleys of ∫us( )x ,y dy  and  the zeros of us( )x ,y exactly match. (   Function and its derivative )

So, the y coordinates of the peaks and valleys of vc( )x ,y and the zeros of us( )x ,y almost match.

2. Integrating the series (3.1c)  term by term from 0  to y  with respect to y , 

∫vc( )x,y dy =  -Σ
r=2



r  log r

( )-1 r-1

sinh( )xlog r  cos( )ylog r     (3.1cy)

The y coordinates of the peaks and valleys of us( )x ,y and ∫vc( )x ,y dy almost match. (  cos( )y log r is shared )

The peaks and valleys of ∫vc( )x ,y dy  and  the zeros of vc( )x ,y exactly match. (   Function and its derivative )

So, the y coordinates of the peaks and valleys of us( )x ,y and the zeros of vc( )x ,y almost match.

3.  As the result of 1 and 2, vc( )x ,y and us( )x ,y do not have common zeros in -1/2 < x < 1/2  , x  0 .

  In Chapter 4,  by organizing and summarizing  the above,  the Riemann hypothesis is proven.

Theorem 4.1 ( Riemann Hypothesis )

  Let ( )z  be the function defined by the following Dirichlet series.
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( )z  = Σ
r=1


e-z log r =

1z

1
+

2z

1
+

3z

1
+

4z

1
+  Re( )z  > 1 (1.)

This function has no non-trivial zeros except on the critical line Re( )z =1/2 .

Proof (overview)
According to  Lemma 3.1 and Theorem 2.3 , ( )1/2  z  has no zeros other than x = 0  in -1/2 < x < 1/2 .

That is,  Dirichlet eta function( )z  has no zeros other than x = 1/2  in 0 < x < 1 .

Therefore,  Riemann zeta function ( )z  also has no zeros other than x = 1/2  in 0 < x < 1 .
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