
21 Taylor Expansion by Real & Imaginary Parts around a Complex Number

  In " 14 Taylor Expansion by Real Part & Imaginary Part ",  the complex functions were expanded into Taylor

series around a real number. In this chapter, we expand complex functions into Taylor series around a complex

number. Furthermore, as a special case of this, the complex function is expanded into Taylor series for each

real part and imaginary part on the vertical line in the complex plane.

Formulas to use

" 14 Taylor Expansion by Real Part & Imaginary Part "  Formula 14.1.2 . This reprint is as follows.

Formula 14.1.2 ( Reprint )

Suppose that a complex function f( )z    z =x + i y  is expanded around a real number a  into a Taylor

series with real coefficients as follows.

f( )z  = Σ
s=0


f( )s
 a

s !

( )z-a s

Then, the following expressions hold for the real and imaginary parts u x ,y , v x ,y .

u( )x,y  = Σ
r=0



Σ
s=0



f 2r+s ( )a
s!

( )x-a s

( )2r !
( )-1 r y2r

v( )x,y  = Σ
r=0



Σ
s=0


f( )2r+s+1 ( )a

s!
( )x-a s

( )2r+1 !
( )-1 r y2r+1

Where, 00 = 1 .

21.1 Taylor Expansion by Real & Imaginary Parts around a Complex Number

21.1.1 Taylor Expansion around a Complex Number

 Formula 14.1.2  can be generalized as follows. 

Theorem 21.1.1 

Let f( )z    z =x + i y be a complex function, u x ,y  , v x ,y are the real & imaginary parts. Further,

let Re , Im  are symbols representing the real & imaginary parts.  Then,  if f( )z is holomorphic in the whole

domain D ,  the following expressions hold for arbitrary point  a ,b D .

f z  = Σ
s=0


f( )s
 a + i b

s !
 z -  a + i b s

(1.1)

u( )x,y  = Σ
r=0



Σ
s=0



s !
 x -a s

Re f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

- Im f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

v( )x,y  =  Σ
r=0



Σ
s=0



s !
 x -a s

Im f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

+ Re f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1
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Where, 00 = 1 .

Proof
  From  (1.1) ,

f z  = Σ
s=0


f( )s
 a + i b

s !
 x -a + i y -b s

Put X = x -a , Y = y -b .  Then, this is expressed as follows.

f z  = Σ
r=0


f( )s
 a + i b

s !
 X + i Y s

  = Σ
s=0


Re f( )s

 a + i b
s !

 X + i Y s

 +  i Σ
s=0


Im f( )s

 a + i b
s !

 X + i Y s

Applying  Formula 14.1.2  to the first term on the right side,

Σ
s=0


Re f( )s

 a + i b
s !

 X + i Y s

 = Σ
r=0



Σ
s=0


Re f( )2r+s

 a + i b
s !
Xs

 2r !
( )-1 r Y2r

+ i Σ
r=0



Σ
s=0


Re f( )2r+s+1

 a + i b
s !
Xs

 2r +1 !
( )-1 r Y2r+1

Applying  Formula 14.1.2  to the second term on the right side,

i Σ
s=0


Im f( )s

 a + i b
s !

 X + i Y s

 = i Σ
r=0



Σ
s=0


Im f( )2r+s

 a + i b
s !
Xs

 2r !
( )-1 r Y2r

+ i 2Σ
r=0



Σ
s=0


Im f( )2r+s+1

 a + i b
s !
Xs

 2r +1 !
( )-1 r Y2r+1

Therefore,

f z  = Σ
r=0



Σ
s=0


Re f( )2r+s

 a + i b
s !
Xs

 2r !
( )-1 r Y2r

- Σ
r=0



Σ
s=0


Im f( )2r+s+1

 a + i b
s !
Xs

 2r +1 !
( )-1 r Y2r+1

+ i Σ
r=0



Σ
s=0


Re f( )2r+s+1

 a + i b
s !
Xs

 2r +1 !
( )-1 r Y2r+1

+ i Σ
r=0



Σ
s=0


Im f( )2r+s

 a + i b
s!
X s

( )2r !
( )-1 r Y2r

i.e.

f z  = Σ
r=0



Σ
s=0


( )-1 r

s !
Xs

 Re f( )2r+s
 a + i b

 2r !
Y2r

 - Im f( )2r+s+1
 a + i b

 2r +1 !
Y2r+1

+ i Σ
r=0



Σ
s=0


( )-1 r

s !
Xs

 Im f( )2r+s
 a + i b

 2r !
Y2r

+ Re f( )2r+s+1
 a + i b

 2r +1 !
Y2r+1

Returning X,Y  to the original symbols, 

f z  = Σ
r=0



Σ
s=0



s !
 x -a s

Re f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

- 2 -



- Im f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

+ i Σ
r=0



Σ
s=0



s !
 x -a s

Im f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

+ Re f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

Replacing the real and imaginary parts with u x ,y , v x ,y , we obtain the desired expressions.   Q.E.D.

Note

  When f( )s
 a    s =0,1,2, are real numbers,  this theorem reduce to  Formula 14.1.2 . 

21.1.2 Taylor Expansion on the Vertical Line

  Putting x =a  in  Theorem 21.1.1 , we obtain the following theorem.

Theorem 21.1.2 

  Let f( )z    z =x + i y be a complex function, u x ,y  , v x ,y are the real & imaginary parts. Further,

let Re , Im  are symbols representing the real & imaginary parts.  Then,  if f( )z is holomorphic in the whole

domain D ,  the following expressions hold for arbitrary point  a ,b D .

f a + i y  = Σ
s=0



s !

f( )s
 a + i b

  a -a  + i   y -b s (1.2)

u a ,y  = Σ
r=0


( )-1 r Re  2r !

f( )2r
 a +ib

 y -b 2r - Im  2r +1 !

f( )2r+1
 a +ib

 y -b 2r+1

v a ,y  = Σ
r=0


( )-1 r Im  2r !

f( )2r
 a +ib

 y -b 2r + Re  2r +1 !

f( )2r+1
 a +ib

 y -b 2r+1

Where, 00 = 1 .

 Proof

  Putting x =a  in  Theorem 21.1.1 , 

f a + i y  = Σ
s=0


f( )s
 a + i b

s !
 a + i y -  a + i b s

u a ,y  = Σ
r=0



Σ
s=0



s !
0s

Re f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

- Im f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

v a ,y  =  Σ
r=0



Σ
s=0



s !
0s

Im f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

+ Re f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1
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Here, let us abbreviate the symbols in {  } of u as follows

Re f( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

 = R2r+s

Im f( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

 = I2r+s+1

Then,

u a ,y  = Σ
r=0



Σ
s=0



s !
0s

 R2r+s - I2r+s+1

= Σ
r=0



0!
00

 R2r+0 - I2r+0+1  + Σ
r=0



Σ
s=1



s !
0s

 R2r+s - I2r+s+1

Since, 00 = 1 ,  0n = 0   n =1,2,3, ,

u a ,y  = Σ
r=0



 R2r+0 - I2r+0+1

Returning R2r , I2r+1  to the original symbols, 

u a ,y  = Σ
r=0



Re f( )2r
 a +ib

 2r !
( )-1 r  y -b 2r

- Im f( )2r+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

In a similar way,

v a ,y   =  Σ
r=0



Im f( )2r
 a +ib

 2r !
( )-1 r  y -b 2r

+ Re f( )2r+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

With a slight rewrite of these, we obtain the desired expressions.

Remark

  (1.2)  is the Taylor series around b  of the function f a +i y  on the vertical line x =a  in the domain D .

And u a ,y ,v a ,y  are sub-series of this,  the former is the real part and the latter is the imaginary part.

Graphically speaking ,  u a ,y ,v a ,y  are 2D figures in which the 3D figures of u x ,y ,v x ,y  in

Theorem 21.1.1  are cut at x =a . Though these can be expressed only on the vertical line,  the entire domain

D can be expressed by changing a parametrically. In this way, the domain of u a ,y ,v a ,y is narrowed

but at the cost of this,  they are represented by a simpler single series.

Method of calculation

 In the following sections,  some numerical examples will be calculated,  but they are difficult to calculate by

hand.  So,

(1) Formula manipulation software Mathematica  is used for calculation and drawing.

(2)  Functions Re z  , Im z  of Mathematica  are used to calculate Re f ( )s  z  , Im f ( )s  z  . 
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(3) 00 = 1 is assumed. So the following options are specified prior to calculation and drawing in Mathematica .

Unprotect [Power] ;  Power [0,0] = 1 ;
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21.2 Example 1: sin z

  As examples of Taylor expansion by real and imaginary parts around complex numbers, this section takes up

sin z . This is so-called entire function that has no singularity. 

21.2.1 Expansion around a+bi

sin z = Σ
s=0


sin a + i b +

2
s

s !
 z -  a + i b s

u( )x,y  = Σ
s=0


sin a +

2
s

s !
 x -a s

Σ
r=0



 cosh b 
 2r !
 y -b 2r

 + sinh b 
 2r +1 !
 y -b 2r+1

v( )x,y  = Σ
s=0


cos a +

2
s

s !
 x -a s

Σ
r=0



 sinh b 
 2r !
 y -b 2r

 + cosh b 
 2r +1 !
 y -b 2r+1

Where, 00 = 1 .

Derivation

  Higher order derivative of f( )z  = sin z  is

f( )s
 z  = sin z +

2
s

From this,

f( )s
 a + i b  = sin a + i b +

2
s

f( )2r+s
 a + i b  = sin a + i b +

2
 2r +s 

f( )2r+s+1
 a + i b  = sin a + i b +

2
 2r +s +1 

 

Substituting these for  Theorem 21.1.1 ,

sin z = Σ
s=0


sin a + i b +

2
s

s !
 z -  a + i b s

u( )x,y  = Σ
r=0



Σ
s=0



s !
 x -a s

Re sin a + i b +
2

 2r +s 
 2r !

( )-1 r  y -b 2r

- Im sin a + i b +
2

 2r +s +1 
 2r +1 !

( )-1 r  y -b 2r+1

v( )x,y  =  Σ
r=0



Σ
s=0



s !
 x -a s

Im sin a + i b +
2

 2r +s 
 2r !

( )-1 r  y -b 2r

+ Re sin a + i b +
2

 2r +s +1 
 2r +1 !

( )-1 r  y -b 2r+1

Although these can be left as they are,

sin a + i b +
2

 2r +s 
 = sin a +

2
 2r +s 

cosh b

+ i cos a +
2

 2r +s 
sinh b
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sin a + i b +
2

 2r +s +1 
 = sin a +

2
 2r +s +1 

cosh b

+ i cos a +
2

 2r +s +1 
sinh b

Therefore,

u( )x,y  = Σ
r=0



Σ
s=0



s !
 x -a s

sin a +
2

 2r +s 
cosh b 

 2r !
( )-1 r  y -b 2r

- cos a +
2

 2r +s +1 
sinh b 

 2r +1 !
( )-1 r  y -b 2r+1

v( )x,y  =  Σ
r=0



Σ
s=0



s !
 x -a s

cos a +
2

 2r +s 
sinh b

 2r !
( )-1 r  y -b 2r

+ sin a +
2

 2r +s +1 
cosh b 

 2r +1 !
( )-1 r  y -b 2r+1

Further ,

sin a +
2

 2r +s 
 = ( )-1 r sin a +

2
s

cos a +
2

 2r +s +1 
 = ( )-1 r cos a +

2
 s +1 

 = -( )-1 r sin a +
2
s

So,

u( )x,y  = Σ
r=0



Σ
s=0



s !
 x -a s

( )-1 r sin a +
2
s

cosh b 
 2r !

( )-1 r  y -b 2r

+ ( )-1 r sin a +
2
s

sinh b 
 2r +1 !

( )-1 r  y -b 2r+1

= Σ
r=0



Σ
s=0


sin a +

2
s

s !
 x -a s

 cosh b 
 2r !
 y -b 2r

 + sinh b 
 2r +1 !
 y -b 2r+1

i.e.

u( )x,y  = Σ
s=0


sin a +

2
s

s !
 x -a s

Σ
r=0



 cosh b 
 2r !
 y -b 2r

 + sinh b 
 2r +1 !
 y -b 2r+1

Furthermore ,

sin a +
2

 2r +s +1 
 = ( )-1 r sin a +

2
 s +1 

 = ( )-1 r cos a +
2
s

cos a +
2

 2r +s 
 = ( )-1 r cos a +

2
s

So,

v( )x,y  =  Σ
r=0



Σ
s=0



s !
 x -a s

( )-1 r cos a +
2
s

sinh b
 2r !

( )-1 r  y -b 2r

+ ( )-1 r cos a +
2
s

cosh b 
 2r +1 !

( )-1 r  y -b 2r+1
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= Σ
r=0



Σ
s=0


cos a +

2
s

s !
 x -a s

 sinh b 
 2r !
 y -b 2r

 + cosh b 
 2r + !
 y -b 2r+1

i.e.

v( )x,y  = Σ
s=0


cos a +

2
s

s !
 x -a s

Σ
r=0



 sinh b 
 2r !
 y -b 2r

 + cosh b 
 2r + !
 y -b 2r+1

Expansion around -1+ i 15

  When a =-1 , b =15 ,  the 3D figures of u x ,y  , v x ,y  are as follows. The left is u x ,y   and the

right is v x ,y  . In both figures, orange is a function and blue is a series.  Both are overlapped exactly.

 

Note

  These reduce to the followings respectively.

u( )x,y  = sin x cosh b cosh y -b  + sinh b sinh y -b  = sin x cosh y

v( )x,y  = cos x sinh b cosh y -b  + cosh b sinh y -b  = cos x sinh y

sin x +i y  = sin x cosh y + i cos x sinh y

21.2.2 Expansion around b on the vertical line x =a
  Substituting x =a  for  21.2.1 ,

sin a + i y  = Σ
s=0


sin a + i b +

2
s

s !
  a -a  + i   y -b s

u( )a ,y  = sin aΣ
r=0



 cosh b 
 2r !
 y -b 2r

 + sinh b 
 2r +1 !
 y -b 2r+1

v( )a ,y  = cos aΣ
r=0



 sinh b 
 2r !
 y -b 2r

 + cosh b 
 2r +1 !
 y -b 2r+1

Where, 00 = 1 .

These are Taylor expansion around b on the vertical line x =a .  Here, u a ,y ,v a ,y are single series.

Expansion around 15 on the vertical line x =-1

  When a =-1 , b =15 ,  the 2D figures of u a ,y  , v a ,y  are as follows. The left is u a ,y   and the
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right is v a ,y  .  In both figures, orange is a function and blue is a series.  Both are overlapped exactly.

 

These are cut views at x =-1  in the 3D figures above.
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21.3 Example 2: log z

  In this section, log z  is taken as an example of a function with a singularity. This is a bit complicated.

21.3.1 Expansion around a+bi

log z = log a + i b  + Σ
s=1


( )-1 s-1

 a + i b s

 s -1 !
s !

 z -  a + i b s 

u( )x, y  = Re log a + i b  - Im a + i b

1
 y -b

-  Σ
s=1



s !
( )-1 s  x -a s

 Re  a + i b s

 s -1 !
 + Im  a + i b s+1

s!
 y -b

- Σ
r=1



Σ
s=0



s !
( )-1 s  x -a s

Re  a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

+  Im  a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

v( )x, y  = Im log a + i b  + Re a + i b

1
 y -b

- Σ
s=1



s !
( )-1 s  x -a s

 Im  a + i b s

 s -1 !
- Re  a + i b s+1

s!
 y -b

-  Σ
r=1



Σ
s=0



s !
( )-1 s  x -a s

Im  a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

- Re  a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

Where, 00 = 1 .

Derivation

  Higher order derivative of f( )z  = log z  is

f( )s
 z  = ( )-1 s-1

zs

 s -1 !
s=1,2,3,

From this,

f( )s
 a + i b  = ( )-1 s-1

 a + i b s

 s -1 !
s=1,2,3,

f( )2r+s
 a + i b  = ( )-1 2r+s-1

 a + i b 2r+s

 2r +s -1 !
s=1,2,3,

f( )2r+s+1
 a + i b  = ( )-1 2r+s

 a + i b 2r+s+1

 2r +s !
s=1,2,3,

Substituting these for  Theorem 21.1.1 ,

log z = log a + i b  + Σ
s=1


( )-1 s-1

 a + i b s

 s -1 !
s !

 z -  a + i b s
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Here, formally,

log a + i b  = ( )-1 -1

 a + i b 0

 -1 !

This is used later.

u( )x, y  = Σ
r=0



Σ
s=0



s !
 x -a s

Re ( )-1 s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

- Im ( )-1 s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

=  
0!
 x -a 0

Re ( )-1 -1

 a + i b 0

 -1 !
0!

( )-1 0  y -b 0

- Im ( )-1 0

 a + i b 1

0!
1!

( )-1 0  y -b 1

+ Σ
s=1



s !
 x -a s

Re ( )-1 s-1

 a + i b s

 s -1 !
0!

( )-1 0  y -b 0

- Im ( )-1 s

 a + i b s+1

s !
1!

( )-1 0  y -b 1

+ Σ
r=1



Σ
s=0



s !
 x -a s

Re ( )-1 s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

- Im ( )-1 s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

Here, replacing ( )-1 -1

 a + i b 0

 -1 !
 with log a + i b ,

    u( )x,y  = Re log a + i b  - Im a + i b

1

1!
 y -b 1

     +  Σ
s=1



s !
 x -a s

 Re ( )-1 s-1

 a + i b s

 s -1 !
 - Im ( )-1 s

 a + i b s+1

s !
1!
 y -b 1

+ Σ
r=1



Σ
s=0



s !
 x -a s

Re ( )-1 s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

-  Im ( )-1 s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

i.e.

u( )x, y  = Re log a + i b  - Im a + i b

1
 y -b

-  Σ
s=1



s !
( )-1 s  x -a s

 Re  a + i b s

 s -1 !
 + Im  a + i b s+1

s!
 y -b
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- Σ
r=1



Σ
s=0



s !
( )-1 s  x -a s

Re  a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

+  Im  a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

v( )x, y  =  Σ
r=0



Σ
s=0



s !
 x -a s

Re ( )-1 2r+s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

+ Im ( )-1 2r+s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

=  
0!
 x -a 0

Re ( )-1 0

 a + i b 1

0!
1!

( )-1 0  y -b 1

+ Im ( )-1 -1

 a + i b 0

 -1 !
0!

( )-1 0  y -b 0

+ Σ
s=1



s !
 x -a s

Re ( )-1 s

 a + i b s+1

s!
1!

( )-1 0  y -b 1

+ Im ( )-1 s-1

 a + i b s

 s -1 !
0!

( )-1 0  y -b 0

+  Σ
r=1



Σ
s=0



s !
 x -a s

Re ( )-1 2r+s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

+ Im ( )-1 2r+s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

= Re a + i b

1
 y -b  + Im log a + i b

+ Σ
s=1



s !
 x -a s

Re ( )-1 s

 a + i b s+1

s!
1!

( )-1 0  y -b 1

+ Im ( )-1 s-1

 a + i b s

 s -1 !
0!

( )-1 0  y -b 0

+  Σ
r=1



Σ
s=0



s !
 x -a s

Re ( )-1 2r+s

 a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

+ Im ( )-1 2r+s-1

 a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

i.e.

v( )x, y  = Im log a + i b  + Re a + i b

1
 y -b

- Σ
s=1



s !
( )-1 s  x -a s

 Im  a + i b s

 s -1 !
 - Re  a + i b s+1

s!
 y -b
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-  Σ
r=1



Σ
s=0



s !
( )-1 s  x -a s

Im  a + i b 2r+s

 2r +s -1 !
 2r !

( )-1 r  y -b 2r

- Re  a + i b 2r+s+1

 2r +s !
 2r +1 !

( )-1 r  y -b 2r+1

Expansion around 0+ i 10

  When a =0 , b =10 ,  the 3D figures of u x ,y  , v x ,y  are as follows. The left is u x ,y   and the

right is v x ,y  .  In both figures, orange is a function and blue is a series.

 

  The origin  0 ,0  is the singularity of this function.  Therefore, these convergent areas are inside a square

inscribed in the circle with a radius of 10 centered on the point  0 ,10 . Though b = 10 in this figure, as b

becomes larger, the square extends to the left, right and upward.

Verification

  Taylor series are expanded up to 4  terms around 0+10i . And, the function values and the series values at

1+9i  are compared. The results are as follows.

 

The function value and the series value are completely the same in the calculation of only 4  terms. Considering 

that the center point of expansion and the destination point are close to each other,  this convergence speed is

surprising as a series of logarithmic function. Moreover, it is expected that the convergence speed will increase

as the center point and the destination point move upward.

21.3.2 Expansion around b on the vertical line x =a
  Substituting x =a  for  21.3.1 ,

u( )a ,y  = Re log a + i b  - Im a + i b

1
 y -b

- Σ
r=1


( )-1 r Re  a + i b 2r

 2r -1 !
 2r !
 y -b 2r

+ Im  a + i b 2r+1

 2r !
 2r +1 !
 y -b 2r+1
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v( )a ,y  = Im log a + i b  + Re a + i b

1
 y -b

- Σ
r=1


( )-1 r Im  a + i b 2r

 2r -1 !
 2r !
 y -b 2r

- Re  a + i b 2r+1

 2r !
 2r +1 !
 y -b 2r+1

Where, 00 = 1 | |z-10  < 10 .

Expansion around 10 on the vertical line x =0

  When a =0 , b =10 ,  the 2D figures of u a ,y  , v a ,y  are as follows. The left is u a ,y   and the

right is v a ,y  .  In both figures, orange is a function and blue is a series.  Both are overlapped exactly.
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21.4 Example 3: Dirichlet Eta Function

  In this section,  we take up Dirichlet Eta Function  z ,  which is defined by the following series.

( )z  = Σ
s=1


( )-1 s-1e-z log s = 

1z

1
 - 

2z

1
 + 

3z

1
 - 

4z

1
 +- 

This function can be expanded to the Taylor series around any point on the complex plane.  But of particular 

interest is the expansion on the critical line x =1/2  and on the boundary x =1 of the critical strip .

21.4.1 Expansion around a +bi

 z  = Σ
s=0


( )s
 a + i b

s !
 z -  a + i b s

u( )x,y  = Σ
r=0



Σ
s=0



s !
 x -a s

Re ( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

- Im ( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

v( )x,y  =  Σ
r=0



Σ
s=0



s !
 x -a s

Im ( )2r+s
 a +ib

 2r !
( )-1 r  y -b 2r

+ Re ( )2r+s+1
 a +ib

 2r +1 !
( )-1 r  y -b 2r+1

Where, ( )s
 z  = 

 1-s
z -s

+( )-1 -sΣ
k=2



Σ
t=2

k

2k+1

( )-1 t-1

 
k

t t z

log st
 , 00 = 1 .

Derivation

   z  , u( )x,y  , v( )x, y  are obtained immediately from  Theorem.21.1.1 . ( )s
 z is obtained from

Formula 26.3.2h  in " 26 Higher and Super Calculus of Zeta Function etc " ( SuperCalculus )

Expansion around 0.3+ i 2

  First, it is verification. Taylor series are expanded up to 25  terms around 0.3+ i 2 . And, the function values

and the series values at -0.3 - i 2  are compared. The results are as follows. Both fully match.

  Next, we try to draw these.   When a =0.3 , b =2 ,  the 3D figures of u x ,y  , v x ,y  are as follows.

The left is u x ,y   and the right is v x ,y  . In both figures, orange is a function and blue is a series. Both

are overlapped exactly.
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21.4.2 Expansion around b on the vertical line x =a
  Applying  Theorem 21.1.2  for Dirichlet Eta Function  z ,

       a + i y  = Σ
s=0



s !
( )s
 a + i b

  a -a  + i   y -b s

      u a ,y  = Σ
r=0


( )-1 r Re  2r !

( )2r
 a +ib

 y -b 2r - Im  2r +1 !

( )2r+1
 a +ib

 y -b 2r+1

      v a ,y  = Σ
r=0


( )-1 r Im  2r !

( )2r
 a +ib

 y -b 2r + Re  2r +1 !

( )2r+1
 a +ib

 y -b 2r+1

      Where, 00 = 1 .

  The problem here is the high-order differential coefficient ( )s
 a + i b .  we used a half-double series to draw

the above two 3D figures,  but it took 80  minutes.  In Taylor expansion around 10000 ,  drawing is almost

impossible, aside from calculation.  So, I devised the following expressions.

 z  = Σ
s=0


cab s  x + i y -   a + i b s

u a ,y  = Σ
r=0


( )-1 r Re cab 2r  y -b 2r - Im cab 2r +1  y -b 2r+1

v a ,y  = Σ
r=0


( )-1 r Im cab 2r  y -b 2r + Re cab 2r +1  y -b 2r+1

Where, 00 = 1 .

  These expressions are used in the following procedure. .

(i)   Use formula manipulation to expand  z  to the Taylor series around a + i b .

(ii)  The coefficients are stored in the array cab s   s =0,1,2,,n

(iii) The coefficients are taken out of the array and draw and calculate u a ,y , v a ,y .

Expansion around 10000 on the critical line x =1/2
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Five non-trivial zeros are observed in this interval,  but the zeros near y =10000  are as follows.

 

The 10143 th non-trivial zero point is obtained by calculation of only 5 terms.

Expansion around 10000 on the boundary x=1 of the critical strip

  When drawing in a similar way,
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  The zeros near y =9998  are as follows.

 

The 1103 th  z -specific zero point is obtained by calculation of 27 terms.
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