
10 Vieta's Formulas on Completed Riemann Zeta

  In the previous chapter, Maclaurin series of the completed Riemann zeta was obtained. If we put the series

as 0, it is an infinite-degree equation. As seen in Chap.8, completed Riemann zeta is completely factored by

the roots (zeros) . So, the relationship between zeros (roots) and coefficients is obtained by Vieta's formula.

10.1 Zeros and Coefficients on ( )z

10.1.1 Coefficients of Maclaurin series of ( )z

Maclaurin series of the completed Riemann zeta  z  was obtained by Theorem 9.1.3 in previous chapter.

When this is slightly modified and reprinted, it is as follows.

Theorem 10.1.1

Let completed Riemann zeta  z  and the Maclaurin series are as follows.
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Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,
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  When A1 A4  are calculated with the formula manipulation software Mathematica ,  it is as follows.

 

10.1.2 Vieta's Formulas on ( )z

Theorem 10.1.2

  Let completed Riemann zeta  z  and the Maclaurin series are as follows.
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Then,

(1) The following expressions hold for non-trivial zeros zk = xk  i yk  , yk  0  k =1,2,3,  of  z .
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(2) When An  is a coefficient in  Theorem 10.1.1 ,  Bn = An    n =1,2,3, .

Proof

(1) According to Theorem 8.3.1 in " 08 Factorization of Completed Riemann Zeta ",  when the non-trivial zeros

of Riemann zeta ( )z are zk = xk  i yk  ,  yk  0   k =1,2,3, ,  completed zeta  (1.0)  is factored

as follows.
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  On the other hand, according to Formula 3.5.1 in " 03 Vieta's Formulas in Infinite-degree Equation " ( Infinite-

degree Equation ) , such an infinite product ( )z is expanded in the Maclaurin series as follows
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(2) Due to the uniqueness of the power series, it has to be Bn = An    n =1,2,3, .

10.1.3 Proposition1 equivalent to the Riemann Hypothesis

  If  Riemann Hypothesis is true,  the following proposition has to hold.

Proposition 10.1.3

  When the non-trivial zeros of Riemann zeta ( )z are zk = 1/2 i yk  ,  yk  0   k =1,2,3, , 

the following expressions hold.
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Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

r = Σ
s=0

r

Σ
t=0

s

2r-s  r -s !

log r-s
2s-t  s -t !

( )-1 s-t gs-t ( )3/2
ct

gr 2
3

 = 
1 r = 0

Σ
k=1

r

Br,k 0 2
3

, 1 2
3

, ,r-1 2
3

r = 1,2,3,

cr  = 
1 r = 0

-
 r -1 !

r-1
r = 1,2,3,

- 4 -



Proof of equivalence

  If the Riemann hypothesis holds, The real part of the non-trivial zeros zk = xk  i yk  of ( )z  is xk =1/2

 k =1,2,3, .  Substituting this for  B1 B4   in Theorem 10.1.2 ,
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Since Bn = An    n =1,2,3,  from  Theorem 10.1.2 (2) ,  replacing B1 B4  with A1 A4  and

substituting a top one by one downward,
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From these, we obtain  (1.32) ~ (1.34) . By Theorem 8.2.4 (" 08 Factorization of Completed Riemann Zeta "),

(1.31)  is equivalent to Riemann Hypothesis. Since  (1.32) ~ (1.33)  contain (1.31)  in some way,  they must

also be equivalent to Riemann Hypothesis respectively.

Q.E.D.

Direct Calculation

  Since  (1.31)  has already been calculated in the previous chapter  8.2 , it is not calculated here. Both sides

of  (1.32) and (1.33)  are calculated with the formula manipulation software Mathematica ,  it is as follows,

f2  is calculated in each 3000 terms and is matched up to the 5th decimal place,  f3  is calculated in each

300 terms and is matched up to the 6th decimal place
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Indirect Calculation

  The direct calculations of  (1.32) ~ (1.34)  are so slow in convergence.  So, we calculate these indirectly

using the following formula. ( See Formula 1.3.1 in " 01 Power of Infinite Series " ( Infinite-degree Equation ) )
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Applying  (3.2)  to  (1.32) ,

Σ
r=1



Σ
 s=r+1



 1/4+yr
2  1/4+ys

2

1
 = 

2
1

  Σ
r=1



1/4+ yr
2

1 2

 - Σ
r=1



 1/4+ yr
2

1 2

Substituting  (1.31)  for the right hand,

Σ
r=1



Σ
 s=r+1



 1/4+yr
2  1/4+ys

2

1
 = -

2
1
Σ
r=1



 1/4+ yr
2

1 2

 + 
2

A1
2

(1.32')

Applying  (3.3)  to  (1.33) ,

Σ
r=1



Σ
 s=r+1



Σ
  t=s+1



 1/4+yr
2  1/4+ys

2  1/4+yt
2

1
 = 

3
1
Σ
r=1



 1/4+ yr
2

1 3

+ Σ
r=1



1/4+ yr
2

1
Σ

r=1



Σ
 s=r+1



 1/4+yr
2  1/4+ys

2

1
 - 

3
1

 Σ
r=1



1/4+ yr
2

1 3

Substituting  (1.31) and (1.32)  for the right hand,

Σ
r=1



Σ
 s=r+1



Σ
  t=s+1



 1/4+yr
2  1/4+ys

2  1/4+yt
2

1
 = 

3
1
Σ
r=1



 1/4+ yr
2

1 3

+
3

A1
3

-A1 A2+A1

(1.33')

- 6 -

http://fractional-calculus.com/power_of_infinite_series.pdf


Applying  (3.4)  to  (1.34) ,
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2  1/4+ yt
2

1

Substituting  (1.31) ~ (1.33)  for the right side,

Σ
r=1



Σ
s=r+1



Σ
t=s+1



Σ
u =t+1



 1/4+ yr
2  1/4+ ys

2  1/4+ yt
2  1/4+ yu

2

1

=  - 
4
1
Σ
r=1



 1/4+ yr
2

1 4

 +
8
1  Σ

r=1



 1/4+ yr
2

1 2 2

+ 
8

A1
4 

- 2
1

A1 - 2 A1 A1 + A2  + A1 A3

Here,

Σ
r=0



 1/4+ yr
2

1

 

2

 =  Σ
r=1



1/4+ yr
2

1

 

2 

- 2Σ
r=1



Σ
 s=r+1



 1/4+yr
2  1/4+ys

2

1

   = A1
2 - 2 A2 + A1

Using this,

Σ
r=1



Σ
s=r+1



Σ
t=s+1



Σ
u =t+1



 1/4+ yr
2  1/4+ ys

2  1/4+ yt
2  1/4+ yu

2

1

=  -
4
1
Σ
r=1



 1/4+ yr
2

1 4 

+ 
4

A1
4

- A1
3 + A1

2  2
5

 - A2

+ 
2

A2
2

+ A1 3A2 + A3 (1.34')

  If  (1.32') ~ (1.34')  are used to calculate the left sides of  (1.32) ~ (1.34)  ,  it is as follows.

f2  is calculated in 500 terms and is matched up to the 9th decimal place,  f3  is calculated in 30 terms and

is matched up to the 11th decimal place,  and f4  is calculated in 20 terms and is matched up to the 14th 

decimal place. The speed of these convergence are much faster than the direct calculations above.
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  The above indirect calculation also can be represented as follows.

Proposition 10.1.3'

  When zk =1/2  i yk  ,  yk  0   k =1,2,3,  are the non-trivial zeros of Riemann zeta ( )z  and

Ar   r=1,2,3,  are constants given by Theorem 10.1.1 , the following expressions hold.

Σ
r=1



 1/4+ yr
2

1 2

 = A1
2 - 2 A1 + A2  = 0.00003710063

Σ
r=1



 1/4+ yr
2

1 3

 =  -A1
3 + 3 A1-2  A1+A2  -3A3 = 0.00000014367786

Σ
r=1



 1/4+ yr
2

1 4

 = A1
4 - 4A1

3 + 4A1
2  2

5
- A2 + 4A1 3A2 + A3 -5

  + 2A1
2 - 20A2 - 12A3 -4A4 = 6.5982791510-10

cf.

  Proposition 4.4.1 in " 04 Sum of series equivalent to the Riemann hypothesis " ( Infinite-degree Equation ) was

Σ
r=1



 1/4+ yr
2

1 2

 =  0
2 + 20 +21 - log + 0 2

3
-

4
1
1 2

3

Σ
r=1



 1/4+ yr
2

1 3

 =  0
3 +30

2 +60 +61 +301 + 
2
3
2 -3log

  + 30 2
3

-
4
3
1 2

3
+

16
1

2 2
3

These are what A1  A3  are expanded.

  The calculation results  with the formula manipulation software Mathematica  are as follows. 
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  As far as the above calculation results are concerned,  the Riemann hypothesis seems to be true.
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10.2 Zeros and Coefficients on ( )z

10.2.1 Coefficients of Maclaurin series of ( )z

  Maclaurin series of the completed Riemann zeta  z  was obtained by Theorem 9.2.3 in previous chapter.

When this is slightly modified and reprinted, it is as follows.

Theorem 10.2.1

  Let completed Riemann zeta  z  and the Maclaurin series are as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z (2.0)

    = ( )0  1+A1 z
1 +A2 z

2 +A3 z
3 +A4 z

4 +

Then, these coefficients Ar   r =0,1,2,3,  are given by

Ar = Σ
s=0

r

Σ
t=0

s

( )-1 r-s

2r-s( )r-s !

log r-s
2s-t ( )s-t !

gs-t ( )5/4
ct (2.a)

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

       r = 1,2,3,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

  The first 4 are as follows.

A0 = 
200!

log 0

200!

g0( )5/4
c0  = 1

A1 = - 
211!

log 1
+

211!

g1( )5/4
+ c1

A2 = 
222!

log 2
+

222!

g2( )5/4
+ c2 -

211!

log 1

211!

g1( )5/4
+

211!

g1( )5/4
c1 -

211!

log 1
c1

A3 = -
233!

log 3 +
233!

g3( )5/4
+ c3 +

222!

log 2

211!

g1( )5/4
+

222!

log 2
c1+

222!

g2( )5/4
c1

   - 
211!

log 1
222!

g2( )5/4
-

211!

log 1
c2 +

211!

g1( )5/4
c2 -

211!

log 1

211!

g1( )5/4
c1

  When A1 A8  are calculated with the formula manipulation software Mathematica ,  it is as follows.
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10.2.2 Vieta's Formulas on ( )z

Theorem 10.2.2

  Let completed Riemann zeta  z  and the Maclaurin series are as follows.

( )z  = - 2
1

+z  2
1

-z 
-

2

1
 2

1
+ z

 2
1
 2

1
+z  2

1
+z (2.0)

    = ( )0  1+B1 z
1 +B2 z

2 +B3 z
3 +B4 z

4 +
Then,

(1) The following expressions hold for non-trivial zeros zk = xk  i yk  , yk  0  k =1,2,3,  of  z .

( )0 = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.9942415563

B1 = -Σ
r1=1



 xr1
-1/2 2+ yr1

2

2 xr1
-1/2

B2 =  Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

22 
 xr1

-1/2  xr2
-1/2

 + Σ
r1=1



  xr1
-1/2 2+ yr1

2

20

B3 = -Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2   xr3
-1/2 2+ yr3

2

23 
 xr1

-1/2  xr2
-1/2  xr3

-1/2

-Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

21
  xr1

-1/2 + xr2
-1/2

B4 =  Σ
r1=1



Σ
 r2=r1+1


 Σ

 r4=r3+1



  xr1-1/2 2+ yr1

2   xr2-1/2 2+ yr2

2   xr4-1/2 2+ yr4

2

24
 xr1-1/2  xr2-1/2  xr4-1/2
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+ Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2   xr3
-1/2 2+ yr3

2

22  xr1-1/2  xr2-1/2 +  + xr2-1/2  xr3-1/2

+ Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

20

     

(2) When An  is a coefficient in  Theorem 10.2.1 ,  Bn = An    n =1,2,3, .

Proof

(1) According to Theorem 8.4.1 in " 08 Factorization of Completed Riemann Zeta ",  when the non-trivial zeros

of Riemann zeta ( )z are zk = xk  i yk  ,  yk  0   k =1,2,3, ,  completed zeta  (2.0)  is factored

as follows.

( )z  = ( )0 Π
n=1



 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

   Where, ( )0 = Π
n =1



xn
2+ yn

2

 xn-1/2 2+ yn
2

 = -
4 1/4

1
 4

1
 2

1
 = 0.9942415563

  On the other hand, according to Formula 3.5.1 in " 03 Vieta's Formulas in Infinite-degree Equation " ( Infinite-

degree Equation ) ,  an infinite product

f( )z  = Π
n =1



 1-
 xn-1/2 2+ yn

2

2 xn-1/2 z
+
 xn-1/2 2+ yn

2

z 2

is expanded in the Maclaurin series as follows

f( )z  = 1+B1 z
1 +B2 z

2 +B3 z
3 +B4 z

4 +
Where,

B1 = -Σ
r1=1



 xr1
-1/2 2+ yr1

2

2 xr1
-1/2

B2 =  Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

22 
 xr1

-1/2  xr2
-1/2

 + Σ
r1=1



  xr1
-1/2 2+ yr1

2

20

B3 = -Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2   xr3
-1/2 2+ yr3

2

23 
 xr1

-1/2  xr2
-1/2  xr3

-1/2

-Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

21
  xr1

-1/2 + xr2
-1/2

B4 =  Σ
r1=1



Σ
 r2=r1+1


 Σ

 r4=r3+1



  xr1-1/2 2+ yr1

2   xr2-1/2 2+ yr2

2   xr4-1/2 2+ yr4

2

24
 xr1-1/2  xr2-1/2  xr4-1/2
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+ Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2   xr3
-1/2 2+ yr3

2

22  xr1-1/2  xr2-1/2 +  + xr2-1/2  xr3-1/2

+ Σ
r1=1



Σ
 r2=r1+1



  xr1
-1/2 2+ yr1

2   xr2
-1/2 2+ yr2

2

20

     

Since  z  = ( )0 f z ,  (1)  holds.

(2) Due to the uniqueness of the power series, it has to be Bn = An    n =1,2,3, .

Q.E.D.

10.2.3 Proposition2 equivalent to the Riemann Hypothesis

  If  Riemann Hypothesis is true,  the following proposition has to hold.

Proposition 10.2.3

  When the non-trivial zeros of Riemann zeta ( )z are zk = 1/2 i yk  ,  yk  0    k =1,2,3, , 

the following expressions hold.

Σ
r1=1



yr1

2

1
 = A2 = 0.0231049931 (2.32)

Σ
r1=1



Σ
 r2=r1+1



yr1

2 yr2

2

1
 = A4 = 0.0002483340 (2.34)

Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



yr1

2 yr2

2 yr3

2

1
 = A6 = 0.00000167435 (2.36)

Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



yr1

2 yr2

2 yr3

2yr4

2

1
 = A8 = 8.03069710-9

(2.38)



Σ
r1=1



Σ
 r2=r1+1


 Σ

 r2n=r2n-1+1



yr1

2 yr2

2  yr2n

2

1
 = A2n 

= Σ
s=0

2n

Σ
t=0

s

( )-1 2n-s

22n-s( )r-s !

log 2n-s
2s-t ( )s-t !

gs-t ( )5/4
ct (2.32n)

Where, n  z is the polygamma function, Bn,k f1 , f2 ,  is Bell polynomials, r  is Stieltjes constant,

gr 4
5

 = 
1 r = 0

Σ
k=1

r

Br,k 0 4
5

 , 1 4
5

 , , r-1 4
5

       r = 1,2,3,

cr  = 
1 r = 0

( )1/2
2

Σ
s=r



( )-1 r 

 s -1 !

s-1  
s

r  2
1 s-r 

r = 1,2,3,

- 13 -



Proof of equivalence

  If the Riemann hypothesis holds, The real part of the non-trivial zeros zk = xk  i yk  of ( )z  is xk =1/2

 k =1,2,3, . Substituting this for each expressions in  Theorem10.2.2 and replacing Br with Ar , we

obtain the desired expressions. According to Theorem 8.2.4 (" 08 Factorization of Completed Riemann Zeta " ),

(2.32)  is equivalent to Riemann Hypothesis. Since  (2.34) ~ (2.32n)  contain (2.32) in some way, they must also

be equivalent to Riemann Hypothesis respectively.

Direct Calculation

  Both sides of  (2.32), (2.34) and (2.36)  are calculated with formula manipulation software Mathematica , it is

as follows, B2  is calculated in 100,000 terms and is matched up to the 3th decimal place, B4  is calculated

in each 3,000 terms and is matched up to the 5th decimal place, B6  is calculated in each 300 terms and is

matched up to the 6th decimal place

 

Indirect Calculation

  Here, (2.32)  is not calculated and B2 = A2 =0.02310499311  is assumed.  And using this,  the left

side of  (2.34) ~ (2.38)  are calculated indirectly.

  According to Formula 1.3.1 in " 01 Power of Infinite Series " ( Infinite-degree Equation ) ,

 Σ
r=0



ar

2

 = Σ
r=0



ar 
2 + 2Σ

r=0



Σ
s=r+1



ar as (3.2)

 Σ
r=0



ar

3

 = Σ
r=0



ar 
3 + 3Σ

r=0



ar Σ
r=0



Σ
s=r+1



ar as-3Σ
r=0



Σ
s=r+1



Σ
t=s+1



ar as at (3.3)

 Σ
r=0



ar

4

 = 2Σ
r=0



ar 
4 - Σ

r=0



ar
2

2 

+ 4 Σ
r=0



ar 

2

Σ
r=0



Σ
s=r+1



ar as

- 8Σ
r=0



ar Σ
r=0



Σ
s=r+1



Σ
t=s+1



ar as at +8Σ
r=0



Σ
s=r+1



Σ
t=s+1



Σ
u =t+1



ar as at au (3.4)

Replacing r =0  with r =1  and ar  with 1/yr
2

,

 Σ
r=0



yr
2

1 2

 = Σ
r=0



 yr
2 

1 2

+ 2Σ
r=0



Σ
s=r+1



yr
2 ys

2

1
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 Σ
r=0



yr
2

1 3

 = Σ
r=0



 yr
2 

1 3 

+3Σ
r=0



yr
2 

1 Σ
r=0



Σ
s=r+1



yr
2 ys

2

1
 - 3Σ

r=0



Σ
s=r+1



Σ
t=s+1



yr
2 ys

2 yt
2

1

 Σ
r=1



yr
2

1 4

 = 2Σ
r=1



 yr
2

1 4

 - Σ
r=1



 yr
2

1 2 2 

+ 4 Σ
r=1



yr
2

1 2

Σ
r=1



Σ
s=r+1



yr
2ys

2

1

- 8Σ
r=1



yr
2

1
Σ

r=1



Σ
s=r+1



Σ
t=s+1



yr
2ys

2yt
2

1
 + 8Σ

r=1



Σ
s=r+1



Σ
t=s+1



Σ
u =t+1



yr
2ys

2yt
2yu

2

1

Substituting  (2.32) ~ (2.38)  for these,

A2
2 = Σ

r=0



yr
4 

1
 + 2A4 (w4)

A2
3 = Σ

r=0



yr
6

1
 +3A2 A4 - 3A6 (w6)

A2
4 = 2Σ

r=1



yr
8

1
 - Σ

r=1



yr
4

1 2 

+4A2
2 A4 - 8A2 A6 +8A8

     = 2Σ
r=1



yr
8

1
 - A2

2 - 2A4
2 

+ 4A2
2 A4 - 8A2 A6 + 8A8

i.e.

A2 
4 = Σ

r=1



yr
8

1
 - 2A4 

2 +4A2
2 A4 - 4A2 A6 +4A8 (w8)

From (w4), (w6), (w8) ,

A4 = -
2
1
Σ
r=0



yr
4 

1
 + 

2
1

A2
2 , A6 =   

3
1
Σ
r=0



yr
6

1
 - 

3
1

A2
3 + A2 A4

A8 = -
4
1
Σ
r=1



yr
8

1
+

4
1

A2
4 + 

2
1

A4 
2 - A2

2 A4 + A2 A6

Since An = Bn    n =1,2,3, ,

B4 = -
2
1
Σ
r=0



yr
4 

1
 + 

2
1

A2
2

(2.34')

B6 =   
3
1
Σ
r=0



yr
6

1
 - 

3
1

A2
3 + A2 A4 (2.36')

B8 = -
4
1
Σ
r=1



yr
8

1
+

4
1

A2
4 + 

2
1

A4 
2 - A2

2 A4 + A2 A6 (2.38')

We should just calculate (2.34'), (2.36') and (2.38')  instead of

B4 =Σ
r=1



Σ
s=r+1



yr
2ys

2

1
  ,   B6 =Σ

r=0



Σ
s=r+1



Σ
t=s+1



yr
2 ys

2 yt
2

1
  ,   B8 =Σ

r=1



Σ
s=r+1



Σ
t=s+1



Σ
u=t+1



yr
2ys

2yt
2yu

2

1
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  The calculation results  with the formula manipulation software Mathematica  are as follows. 

B4  is calculated in 500 terms and is matched up to the 9th decimal place, B6  is calculated in 30 terms and

is matched up to the 11th decimal place,  and B8  is calculated in 20 terms and is matched up to the 13th 

decimal place.  The speed of these convergence are much faster than the direct calculations above.

 

  (w4), (w6) and (w8)  also can be represented as follows.

Proposition 10.2.3'

  When zk =1/2 i yk  ,  yk  0   k =1,2,3,  are the non-trivial zeros of Riemann zeta ( )z  and

Ar   r=1,2,3,  are constants given by  Theorem 10.2.1 , the following expressions hold.

Σ
r=1



yr
4

1
 = A2

2 -2A4 = 0.00003717259

Σ
r=1



yr
6

1
 = A2 

3 -3A2 A4 +3A6 = 0.00000014417393

Σ
r=1



yr
8

1
 = A2 

4 + 2A4 
2 - 4A2

2 A4 + 4A2 A6 - 4A8 = 6.630310-10

  The calculation results  with the formula manipulation software Mathematica  are as follows.  Higher precision

is required for calculation of the right side.
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 As far as the above calculation results are concerned,  the Riemann hypothesis seems to be true.

2018.09.12

2018.09.19  Added the 4th power and the 8th power.

Kano Kono

Alien's Mathematics
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