10 Vieta's Formulas on Completed Riemann Zeta

In the previous chapter, Maclaurin series of the completed Riemann zeta was obtained. If we put the series as 0 , it is an infinite-degree equation. As seen in Chap. 8 completed Riemann zeta is completely factored by the roots (zeros). So, the relationship between zeros (roots) and coefficients is obtained by Vieta's formula.

10.1 Zeros and Coefficients on $\xi(z)$

10.1.1 Coefficients of Maclaurin series of $\xi(z)$

Maclaurin series of the completed Riemann zeta $\xi(z)$ was obtained by Theorem 9.1.3 in previous chapter When this is slightly modified and reprinted, it is as follows.

Theorem 10.1.1

Let completed Riemann zeta $\xi(z)$ and the Maclaurin series are as follows.

$$
\begin{equation*}
\xi(z)=-z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z)=\sum_{r=0}^{\infty} A_{r} z^{r} \tag{1.0}
\end{equation*}
$$

Then, these coefficients $A_{r} \quad r=0,1,2,3, \cdots$ are given by

$$
\begin{equation*}
A_{r}=\sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log ^{r-s} \pi}{2^{r-s}(r-s)!} \frac{(-1)^{s-t} g_{s-t}(3 / 2)}{2^{s-t}(s-t)!} c_{t} \tag{1.a}
\end{equation*}
$$

Where, $\psi_{n}(z)$ is the polygamma function, $B_{n, k}\left(f_{1}, f_{2}, \ldots\right)$ is Bell polynomials, γ_{r} is Stieltjes constant,

$$
\begin{aligned}
& g_{r}\left(\frac{3}{2}\right)=\left\{\begin{array}{cl}
1 & r=0 \\
\sum_{k=1}^{r} B_{r, k}\left(\psi_{\theta}\left(\frac{3}{2}\right), \psi_{1}\left(\frac{3}{2}\right), \ldots, \psi_{r-1}\left(\frac{3}{2}\right)\right) & r=1,2,3, \cdots
\end{array}\right. \\
& c_{r}= \begin{cases}1 & r=0 \\
-\frac{\gamma_{r-1}}{(r-1)!} & r=1,2,3, \cdots\end{cases}
\end{aligned}
$$

The first 4 are as follows.

$$
\begin{aligned}
A_{0}= & \frac{\log ^{0} \pi}{2^{0} 0!} \frac{(-1)^{0} g_{0}(3 / 2)}{2^{0} 0!} c_{0}=1 \\
A_{1}= & \frac{\log ^{1} \pi}{2^{1} 1!}-\frac{g_{1}(3 / 2)}{2^{1} 1!}-\frac{\gamma_{0}}{0!} \\
A_{2}= & \frac{\log ^{2} \pi}{2^{2} 2!}+\frac{g_{2}(3 / 2)}{2^{2} 2!}-\frac{\gamma_{1}}{1!}-\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{1}(3 / 2)}{2^{1} 1!}+\frac{g_{1}(3 / 2)}{2^{1} 1!} \frac{\gamma_{0}}{0!}-\frac{\log ^{1} \pi}{2^{1} 1!} \frac{\gamma_{0}}{0!} \\
A_{3}= & \frac{\log ^{3} \pi}{2^{3} 3!}-\frac{g_{3}(3 / 2)}{2^{3} 3!}-\frac{\gamma_{2}}{2!}-\frac{\log ^{2} \pi}{2^{2} 2!} \frac{g_{1}(3 / 2)}{2^{1} 1!}-\frac{\log ^{2} \pi}{2^{2} 2!} \frac{\gamma_{0}}{0!}-\frac{g_{2}(3 / 2)}{2^{2} 2!} \frac{\gamma_{0}}{0!} \\
& \quad+\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{2}(3 / 2)}{2^{2} 2!}-\frac{\log ^{1} \pi}{2^{1} 1!} \frac{\gamma_{1}}{1!}+\frac{g_{1}(3 / 2)}{2^{1} 1!} \frac{\gamma_{1}}{1!}+\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{1}(3 / 2)}{2^{1} 1!} \frac{\gamma_{0}}{0!}
\end{aligned}
$$

When $A_{1} \sim A_{4}$ are calculated with the formula manipulation software Mathematica, it is as follows.

$$
\begin{aligned}
& \text { Tbl } \left.\psi\left[x_{-}, z_{-}\right]:=\text {Table[PolyGamma }[k, z],\{k, 0, x-1\}\right] \\
& \mathrm{g}_{r_{-}}\left[\frac{3}{2}\right]:=\operatorname{If}\left[r==0,1, \sum_{\mathrm{k}=1}^{r} \operatorname{BellY}\left[r, \mathrm{k}, \operatorname{Tbl} \psi\left[r, \frac{3}{2}\right]\right]\right] \\
& \gamma_{s_{-}}:=\text {stieltjesGamma [s] } \quad C_{r_{-}}:=\operatorname{If}\left[r==0,1,-\frac{\gamma_{r-1}}{(x-1)!}\right] \\
& \mathrm{A}_{r_{-}}:=\sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log [\pi]^{r-s}}{2^{r-s}(x-s)!} \frac{(-1)^{s-t} g_{s-t}[3 / 2]}{2^{s-t}(s-t)!} c_{t}
\end{aligned}
$$

SetPrecision [\{ $\left.\left.A_{1}, A_{2}, A_{3}, A_{4}\right\}, 12\right]$
$\{-0.02309570897,0.02334386453,-0.00049798385,0.00025318173\}$

10.1.2 Vieta's Formulas on $\xi(z)$

Theorem 10.1.2

Let completed Riemann zeta $\xi(z)$ and the Maclaurin series are as follows.

$$
\begin{equation*}
\xi(z)=-z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z)=\sum_{r=0}^{\infty} B_{r} z^{r} \tag{1.0}
\end{equation*}
$$

Then,
(1) The following expressions hold for non-trivial zeros $z_{k}=x_{k} \pm i y_{k}, y_{k} \neq 0 \quad k=1,2,3, \cdots$ of $\zeta(z)$.

$$
\begin{aligned}
B_{1}= & -\sum_{r_{1}=1}^{\infty} \frac{2 x_{r_{1}}}{x_{r_{1}}^{2}+y_{r_{1}}^{2}} \\
B_{2}= & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}+\sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2}+y_{r_{1}}^{2}} \\
B_{3}= & -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1 r_{3}=r_{2}+1}^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)}-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{4}\left(x_{r_{1}}+x_{r_{2}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)} \\
B_{4}= & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} x_{r_{3}}^{\infty} x_{r_{3}}=r_{2}+1 \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)\left(x_{r_{4}}^{2}+y_{r_{4}}^{2}\right)}{\sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2}\left(x_{r_{1}} x_{r_{2}}+x_{r_{1}} x_{r_{3}}+x_{r_{2}} x_{r_{3}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)}} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& B_{2 n-1}=-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \ldots \sum_{r_{2 n-1}=r_{2 n-2}+1}^{\infty} \frac{2^{2 n-1} x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n-1}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{2 n-1}}^{2}+y_{r_{2 n-1}}^{2}\right)} \\
& -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2 n-2}=r_{2 n-3}+1}^{\infty} \frac{2^{2 n-3}\left(x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n-3}}+x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n-2}}+\cdots+x_{r_{2}} x_{r_{3}} \cdots x_{r_{2 n-2}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{2 n-2}}^{2}+y_{r_{2 n-2}}^{2}\right)} \\
& \text { : } \\
& -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \ldots \sum_{r_{n}=r_{n-1}+1}^{\infty} \frac{2^{1}\left(x_{r_{1}}+x_{r_{2}}+\cdots+x_{r_{n}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{n}}^{2}+y_{r_{n}}^{2}\right)} \\
& B_{2 n}=\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2 n}=r_{2 n-1}+1}^{\infty} \frac{2^{2 n} x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{2 n}}^{2}+y_{r_{2 n}}^{2}\right)} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2 n-1} r_{2 n-2}+1}^{\infty} \frac{2^{2 n-2}\left(x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n-2}}+x_{r_{1}} x_{r_{2}} \cdots x_{r_{2 n-1}}+\cdots+x_{r_{2}} x_{r_{3}} \cdots x_{r_{2 n-1}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{2 n-1}}^{2}+y_{r_{2 n-1}}^{2}\right)} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{n}=r_{n-1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right) \cdots\left(x_{r_{n}}^{2}+y_{r_{n}}^{2}\right)} \\
& \text { (2) When } A_{n} \text { is a coefficient in Theorem 10.1.1, } B_{n}=A_{n} \quad n=1,2,3, \cdots \text {. }
\end{aligned}
$$

Proof

(1) According to Theorem 8.3.1 in " 08 Factorization of Completed Riemann Zeta"," when the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_{k}=x_{k} \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$, completed zeta (1.0) is factored as follows.

$$
\xi(z)=\prod_{n=1}^{\infty}\left(1-\frac{2 x_{n} z}{x_{n}^{2}+y_{n}^{2}}+\frac{z^{2}}{x_{n}^{2}+y_{n}^{2}}\right)
$$

On the other hand, according to Formula 3.5.1 in " 03 Vieta's Formulas in Infinite-degree Equation]' (Infinitedegree Equation), such an infinite product $\xi(z)$ is expanded in the Maclaurin series as follows

$$
\xi(z)=1+B_{1} z^{1}+B_{2} z^{2}+B_{3} z^{3}+B_{4} z^{4}+\cdots
$$

Where,

$$
\begin{aligned}
& B_{1}=-\sum_{r_{1}=1}^{\infty} \frac{2 x_{r_{1}}}{x_{r_{1}}^{2}+y_{r_{1}}^{2}} \\
& B_{2}=\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}+\sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2}+y_{r_{1}}^{2}} \\
& B_{3}=-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1 r_{3}=r_{2}+1}^{\infty} \sum^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)}-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1}\left(x_{r_{1}}+x_{r_{2}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
B_{4}= & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{4} x_{r_{1}} x_{r_{2}} x_{r_{3}} x_{r_{4}}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)\left(x_{r_{4}}^{2}+y_{r_{4}}^{2}\right)} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2}\left(x_{r_{1}} x_{r_{2}}+x_{r_{1}} x_{r_{3}}+x_{r_{2}} x_{r_{3}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2}+y_{r_{3}}^{2}\right)} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}
\end{aligned}
$$

(2) Due to the uniqueness of the power series, it has to be $B_{n}=A_{n} \quad n=1,2,3, \cdots$.

10.1.3 Proposition1 equivalent to the Riemann Hypothesis

If Riemann Hypothesis is true, the following proposition has to hold.

Proposition 10.1.3

When the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_{k}=1 / 2 \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$, the following expressions hold.

$$
\begin{align*}
& \sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}=-A_{1}=0.0230957089 \cdots \tag{1}\\
& \begin{array}{r}
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}=A_{2}+A_{1}=0.0002481555 \cdots \\
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)}=-A_{3}-2\left(A_{2}+A_{1}\right) \\
=0.0000016727 \cdots
\end{array} \tag{2}\\
& \begin{array}{r}
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)} \\
=A_{4}+3 A_{3}+5\left(A_{2}+A_{1}\right)=8.021073428 \times 10^{-9}
\end{array}
\end{align*}
$$

Where, $\psi_{n}(z)$ is the polygamma function, $B_{n, k}\left(f_{1}, f_{2}, \ldots\right)$ is Bell polynomials, γ_{r} is Stieltjes constant,

$$
\begin{aligned}
& A_{r}=\sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log ^{r-s} \pi}{2^{r-s}(r-s)!} \frac{(-1)^{s-t} g_{s-t}(3 / 2)}{2^{s-t}(s-t)!} c_{t} \\
& g_{r}\left(\frac{3}{2}\right)= \begin{cases}1 & r=0 \\
\sum_{k=1}^{r} B_{r, k}\left(\psi_{0}\left(\frac{3}{2}\right), \psi_{1}\left(\frac{3}{2}\right), \ldots, \psi_{r-1}\left(\frac{3}{2}\right)\right) & r=1,2,3, \cdots\end{cases} \\
& c_{r}= \begin{cases}1 & r=0 \\
-\frac{\gamma_{r-1}}{(r-1)!} & r=1,2,3, \cdots\end{cases}
\end{aligned}
$$

Proof of equivalence

If the Riemann hypothesis holds, The real part of the non-trivial zeros $z_{k}=x_{k} \pm i y_{k}$ of $\zeta(Z)$ is $x_{k}=1 / 2$ $(k=1,2,3, \cdots)$. Substituting this for $B_{1} \sim B_{4}$ in Theorem 10.1.2,

$$
\begin{aligned}
& B_{1}=-\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}} \\
& B_{2}= \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}+\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}} \\
& B_{3}=-\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)}-\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)} \\
& B_{4}= \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{\sum_{u=t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)}}{} \\
&+\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{3}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)} \\
&+\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}
\end{aligned}
$$

Since $B_{n}=A_{n} \quad n=1,2,3, \cdots$ from Theorem 10.1.2(2), replacing $B_{1} \sim B_{4}$ with $A_{1} \sim A_{4}$ and substituting a top one by one downward,

$$
\begin{aligned}
& A_{1}=-\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}} \\
& A_{2}=\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}-A_{1} \\
& A_{3}=-\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)}-2\left(A_{2}+A_{1}\right) \\
& A_{4}=\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)} \\
& -3 A_{3}-5\left(A_{2}+A_{1}\right)
\end{aligned}
$$

From these, we obtain $\left(1.3_{2}\right) \sim\left(1.3_{4}\right)$. By Theorem 8.2.4 (" 08 Factorization of Completed Riemann Zeta"), $\left(1.3_{1}\right)$ is equivalent to Riemann Hypothesis. Since $\left(1.3_{2}\right) \sim\left(1.3_{3}\right)$ contain (1.3 $)$ in some way, they must also be equivalent to Riemann Hypothesis respectively.
Q.E.D.

Direct Calculation

Since $\left(1.3_{1}\right)$ has already been calculated in the previous chapter 8.2 , it is not calculated here. Both sides of $\left(1.3_{2}\right)$ and $\left(1.3_{3}\right)$ are calculated with the formula manipulation software Mathematica , it is as follows,
f_{2} is calculated in each 3000 terms and is matched up to the 5th decimal place, f_{3} is calculated in each 300 terms and is matched up to the 6th decimal place

```
\(y_{r_{-}}:=\operatorname{Im}[\) ZetaZero[ \(\left.I]\right]\)
\(\mathrm{f}_{2}[m \mathrm{~L}]:=\sum_{\mathrm{r}=1}^{\mathrm{m}} \sum_{\mathrm{s}=\mathrm{r}+1}^{\mathrm{m}} \frac{1}{\left(1 / 4+\mathrm{y}_{\mathrm{r}}{ }^{2}\right)\left(1 / 4+\mathrm{ys}^{2}\right)}\)
\(\mathrm{N}\left[\mathrm{f}_{2}[3000]\right] \quad \mathrm{N}\left[\mathrm{A}_{2}+\mathrm{A}_{1}\right]\)
0.0002405830 .000248156
\(f_{3}\left[m \_\right]:=\sum_{r=1}^{m} \sum_{s=r+1}^{m} \sum_{t=s+1}^{m} \frac{1}{\left(1 / 4+y_{r}{ }^{2}\right)\left(1 / 4+y_{s}{ }^{2}\right)\left(1 / 4+y_{t}{ }^{2}\right)}\)
\(\mathrm{N}\left[\mathrm{f}_{3}[300]\right] \quad \mathrm{N}\left[-\mathrm{A}_{3}-2\left(\mathrm{~A}_{2}+\mathrm{A}_{1}\right)\right]\)
\(1.304663 \times 10^{-6} \quad 1.67271 \times 10^{-6}\)
```


Indirect Calculation

The direct calculations of $\left(1.3_{2}\right) \sim\left(1.3_{4}\right)$ are so slow in convergence. So, we calculate these indirectly using the following formula. (See Formula 1.3.1 in " 01 Power of Infinite Series" (Infinite-degree Equation))

$$
\begin{align*}
\left(\sum_{r=0}^{\infty} a_{r}\right)^{2}= & \sum_{r=0}^{\infty} a_{r}^{2}+2 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s} \tag{3.2}\\
\left(\sum_{r=0}^{\infty} a_{r}\right)^{3}= & \sum_{r=0}^{\infty} a_{r}^{3}+3 \sum_{r=0}^{\infty} a_{r} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s}-3 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_{r} a_{s} a_{t} \tag{3.3}\\
\left(\sum_{r=0}^{\infty} a_{r}\right)^{4}= & 2 \sum_{r=0}^{\infty} a_{r}^{4}-\left(\sum_{r=0}^{\infty} a_{r}^{2}\right)^{2}+4\left(\sum_{r=0}^{\infty} a_{r}\right)^{2} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s} \\
& -8 \sum_{r=0}^{\infty} a_{r} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1 t=s+1}^{\infty} \sum_{t}^{\infty} a_{r} a_{s} a_{t}+8 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} a_{r} a_{s} a_{t} a_{u} \tag{3.4}
\end{align*}
$$

Applying (3.2) to (1.32),

$$
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}=\frac{1}{2}\left\{\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)^{2}-\sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}\right\}
$$

Substituting (1.31) for the right hand,

$$
\begin{equation*}
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}=-\frac{1}{2} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}+\frac{A_{1}^{2}}{2} \tag{2}
\end{equation*}
$$

Applying (3.3) to (1.33),

$$
\begin{aligned}
& \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)}=\frac{1}{3} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{3} \\
& \\
& \quad+\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}} \cdot \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}-\frac{1}{3}\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)^{3}
\end{aligned}
$$

Substituting (1.3) and (1.32) for the right hand,

$$
\begin{equation*}
\sum_{r=1}^{\infty} \sum_{s}^{\infty} \sum_{r+1}^{\infty} \frac{1}{t=s+1}\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right) \quad=\frac{1}{3} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{3}+\frac{A_{1}^{3}}{3}-A_{1}\left(A_{2}+A_{1}\right) \tag{3}
\end{equation*}
$$

Applying (3.4) to (1.34),

$$
\begin{aligned}
\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} & \sum_{t=s+1 u}^{\infty} \sum_{t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)} \\
= & \frac{1}{8}\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)^{4}-\frac{1}{4} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{4}+\frac{1}{8}\left(\sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}\right)^{2} \\
& -\frac{1}{2}\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)^{2}\left(\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)}\right) \\
& +\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)\left(\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)}\right)
\end{aligned}
$$

Substituting $\left(1.3_{1}\right) \sim\left(1.3_{3}\right)$ for the right side,

$$
\begin{aligned}
& \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1 u}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)} \\
&=- \frac{1}{4} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{4}+\frac{1}{8}\left(\sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}\right)^{2} \\
&+\frac{A_{1}^{4}}{8}-\left(\frac{1}{2} A_{1}-2\right) A_{1}\left(A_{1}+A_{2}\right)+A_{1} A_{3}
\end{aligned}
$$

Here,

$$
\begin{aligned}
\sum_{r=0}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2} & =\left(\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}\right)^{2}-2 \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)} \\
& =A_{1}^{2}-2\left(A_{2}+A_{1}\right)
\end{aligned}
$$

Using this,

$$
\begin{align*}
& \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1 u}^{\infty} \sum_{u t+1}^{\infty} \frac{1}{\left(1 / 4+y_{r}^{2}\right)\left(1 / 4+y_{s}^{2}\right)\left(1 / 4+y_{t}^{2}\right)\left(1 / 4+y_{u}^{2}\right)} \\
&=-\frac{1}{4} \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{4}+\frac{A_{1}^{4}}{4}-A_{1}^{3}+A_{1}^{2}\left(\frac{5}{2}-A_{2}\right) \\
&+\frac{A_{2}^{2}}{2}+A_{1}\left(3 A_{2}+A_{3}\right) \tag{4}
\end{align*}
$$

If $\left(1.3_{2}^{\prime}\right) \sim\left(1.3_{4}{ }^{\prime}\right)$ are used to calculate the left sides of $\left(1.3_{2}\right) \sim\left(1.3_{4}\right)$, it is as follows.
f_{2} is calculated in 500 terms and is matched up to the 9th decimal place, f_{3} is calculated in 30 terms and is matched up to the 11 th decimal place, and f_{4} is calculated in 20 terms and is matched up to the 14th decimal place. The speed of these convergence are much faster than the direct calculations above.
$y_{r_{-}}:=\operatorname{Im}[$ ZetaZero[$\left.r]\right]$
$\mathrm{f}_{2}\left[m_{-}\right]:=-\frac{1}{2} \sum_{\mathrm{r}=1}^{\mathrm{m}}\left(\frac{1}{1 / 4+\mathrm{y}_{\mathrm{r}}{ }^{2}}\right)^{2}+\frac{\mathrm{A}_{1}{ }^{2}}{2}$

$$
\begin{array}{ll}
\mathrm{N}\left[\mathrm{I}_{2}[500], 7\right] & \mathrm{N}\left[\mathrm{~A}_{2}+\mathrm{A}_{1}, 7\right] \\
0.0002481558 & 0.0002481556
\end{array}
$$

$$
\begin{aligned}
& f_{3}\left[m_{-}\right]:=\frac{1}{3} \sum_{r=1}^{m}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{3}+\frac{\mathrm{A}_{1}^{3}}{3}-A_{1}\left(A_{1}+A_{2}\right) \\
& N\left[f_{3}[30], 7\right] \\
& N\left[-A_{3}-2\left(A_{2}+A_{1}\right), 7\right] \\
& 1.672711 \times 10^{-6}
\end{aligned}
$$

$$
f_{4}\left[m_{-}\right]:=-\frac{1}{4} \sum_{r=1}^{m}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{4}+\frac{A_{1}^{4}}{4}-A_{1}^{3}+A_{1}^{2}\left(\frac{5}{2}-A_{2}\right)+\frac{A_{2}^{2}}{2}+A_{1}\left(3 A_{2}+A_{3}\right)
$$

$$
\mathrm{N}\left[\mathrm{f}_{4}[20], 7\right] \quad \mathrm{N}\left[\mathrm{~A}_{4}+3 \mathrm{~A}_{3}+5\left(\mathrm{~A}_{2}+\mathrm{A}_{1}\right), 7\right]
$$

$$
8.021074 \times 10^{-9} \quad 8.021073 \times 10^{-9}
$$

The above indirect calculation also can be represented as follows.

Proposition 10.1.3'
When $z_{k}=1 / 2 \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$ are the non-trivial zeros of Riemann zeta $\zeta(z)$ and $A_{r} \quad r=1,2,3, \cdots$ are constants given by Theorem 10.1.1, the following expressions hold.

$$
\begin{aligned}
& \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}=A_{1}^{2}-2\left(A_{1}+A_{2}\right)=0.00003710063 \cdots \\
& \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{3}=-A_{1}^{3}+3\left(A_{1}-2\right)\left(A_{1}+A_{2}\right)-3 A_{3}=0.00000014367786 \cdots \\
& \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{4}=A_{1}^{4}-4 A_{1}^{3}+4 A_{1}^{2}\left(\frac{5}{2}-A_{2}\right)+4 A_{1}\left(3 A_{2}+A_{3}-5\right) \\
& +2 A_{1}^{2}-20 A_{2}-12 A_{3}-4 A_{4}=6.59827915 \times 10^{-10}
\end{aligned}
$$

cf.
Proposition 4.4 .1 in " 04 Sum of series equivalent to the Riemann hypothesis" (Infinite-degree Equation) was

$$
\begin{aligned}
& \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{2}=\gamma_{0}^{2}+2 \gamma_{0}+2 \gamma_{1}-\log \pi+\psi_{0}\left(\frac{3}{2}\right)-\frac{1}{4} \psi_{1}\left(\frac{3}{2}\right) \\
& \sum_{r=1}^{\infty}\left(\frac{1}{1 / 4+y_{r}^{2}}\right)^{3}=\gamma_{0}^{3}+3 \gamma_{0}^{2}+6 \gamma_{0}+6 \gamma_{1}+3 \gamma_{0} \gamma_{1}+\frac{3}{2} \gamma_{2}-3 \log \pi \\
&+3 \psi_{0}\left(\frac{3}{2}\right)-\frac{3}{4} \psi_{1}\left(\frac{3}{2}\right)+\frac{1}{16} \psi_{2}\left(\frac{3}{2}\right)
\end{aligned}
$$

These are what $A_{1} \sim A_{3}$ are expanded.

The calculation results with the formula manipulation software Mathematica are as follows.

$$
\begin{aligned}
& \mathrm{y}_{r_{-}}:=\operatorname{Im}[\text { ZetaZero }[r]] \\
& \mathrm{N}\left[\left\{\sum_{\mathrm{r}=1}^{2000}\left(\frac{1}{1 / 4+\mathrm{y}_{\mathrm{r}}{ }^{2}}\right)^{2}, \mathrm{~A}_{1}{ }^{2}-2\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)\right\}, 7\right] \\
& \{0.00003710062,0.00003710064\} \\
& \mathrm{N}\left[\left\{\sum_{\mathrm{r}} \mathrm{l}\left(\frac{1}{1 / 4+\mathrm{y}_{r}^{2}}\right)^{3},-\mathrm{A}_{1}{ }^{3}+3\left(\mathrm{~A}_{1}-2\right)\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)-3 \mathrm{~A}_{3}\right\}, 7\right] \\
& \left\{1.436777 \times 10^{-7}, 1.436779 \times 10^{-7}\right\} \\
& \mathrm{f} 4:=\mathrm{A}_{1}^{4}-4 \mathrm{~A}_{1}^{3}+4 \mathrm{~A}_{1}^{2}\left(\frac{5}{2}-\mathrm{A}_{2}\right)+4 \mathrm{~A}_{1}\left(3 \mathrm{~A}_{2}+\mathrm{A}_{3}-5\right) \\
& \mathrm{N}\left[\left\{\sum_{r=1}^{25}\left(\frac{1}{1 / 4+\mathrm{y}_{r}^{2}}\right)^{4}, \mathrm{f} 4\right\}, 7\right] \\
& \left\{6.598267 \times 10^{-10}, 6.598279 \times 10^{-10}\right\}
\end{aligned}
$$

As far as the above calculation results are concerned, the Riemann hypothesis seems to be true.

10.2 Zeros and Coefficients on $\Xi(z)$

10.2.1 Coefficients of Maclaurin series of $\Xi(z)$

Maclaurin series of the completed Riemann zeta $\Xi(z)$ was obtained by Theorem 9.2.3 in previous chapter When this is slightly modified and reprinted, it is as follows.

Theorem 10.2.1

Let completed Riemann zeta $\Xi(z)$ and the Maclaurin series are as follows.

$$
\begin{align*}
\Xi(z) & =-\left(\frac{1}{2}+z\right)\left(\frac{1}{2}-z\right) \pi^{-\frac{1}{2}\left(\frac{1}{2}+z\right)} \Gamma\left\{\frac{1}{2}\left(\frac{1}{2}+z\right)\right\} \zeta\left(\frac{1}{2}+z\right) \tag{2.0}\\
& =\Xi(0)\left(1+A_{1} z^{1}+A_{2} z^{2}+A_{3} z^{3}+A_{4} z^{4}+\cdots\right)
\end{align*}
$$

Then, these coefficients $A_{r} r=0,1,2,3, \cdots$ are given by

$$
\begin{equation*}
A_{r}=\sum_{s=0}^{r} \sum_{t=0}^{s}(-1)^{r-s} \frac{\log ^{r-s} \pi}{2^{r-s}(r-s)!} \frac{g_{s-t}(5 / 4)}{2^{s-t}(s-t)!} c_{t} \tag{2.a}
\end{equation*}
$$

Where, $\psi_{n}(z)$ is the polygamma function, $B_{n, k}\left(f_{1}, f_{2}, \ldots\right)$ is Bell polynomials, γ_{r} is Stieltjes constant,

$$
\begin{aligned}
& g_{r}\left(\frac{5}{4}\right)=\left\{\begin{array}{cc}
1 & r=0 \\
\sum_{k=1}^{r} B_{r, k}\left(\psi_{0}\left(\frac{5}{4}\right), \psi_{1}\left(\frac{5}{4}\right), \ldots, \psi_{r-1}\left(\frac{5}{4}\right)\right) & r=1,2,3, \cdots
\end{array}\right. \\
& C_{r}= \begin{cases}1 & r=0 \\
\frac{2}{\zeta(1 / 2)} \sum_{s=r}^{\infty}(-1)^{r} \frac{\gamma_{s-1}}{(s-1)!}\binom{s}{r}\left(\frac{1}{2}\right)^{s-r} & r=1,2,3, \cdots\end{cases}
\end{aligned}
$$

The first 4 are as follows.

$$
\begin{aligned}
A_{0}= & \frac{\log ^{0} \pi}{2^{0} 0!} \frac{g_{0}(5 / 4)}{2^{0} 0!} c_{0}=1 \\
A_{1}= & -\frac{\log ^{1} \pi}{2^{1} 1!}+\frac{g_{1}(5 / 4)}{2^{1} 1!}+c_{1} \\
A_{2}= & \frac{\log ^{2} \pi}{2^{2} 2!}+\frac{g_{2}(5 / 4)}{2^{2} 2!}+c_{2}-\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{1}(5 / 4)}{2^{1} 1!}+\frac{g_{1}(5 / 4)}{2^{1} 1!} c_{1}-\frac{\log ^{1} \pi}{2^{1} 1!} c_{1} \\
A_{3}= & -\frac{\log ^{3} \pi}{2^{3} 3!}+\frac{g_{3}(5 / 4)}{2^{3} 3!}+c_{3}+\frac{\log ^{2} \pi}{2^{2} 2!} \frac{g_{1}(5 / 4)}{2^{1} 1!}+\frac{\log ^{2} \pi}{2^{2} 2!} c_{1}+\frac{g_{2}(5 / 4)}{2^{2} 2!} c_{1} \\
& -\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{2}(5 / 4)}{2^{2} 2!}-\frac{\log ^{1} \pi}{2^{1} 1!} c_{2}+\frac{g_{1}(5 / 4)}{2^{1} 1!} c_{2}-\frac{\log ^{1} \pi}{2^{1} 1!} \frac{g_{1}(5 / 4)}{2^{1} 1!} c_{1}
\end{aligned}
$$

When $A_{1} \sim A_{8}$ are calculated with the formula manipulation software Mathematica, it is as follows.
Tbly $\left[x_{-}, z_{-}\right]:=$Table[PolyGamma[k, $\left.\left.z\right],\{k, 0, x-1\}\right]$
$\gamma_{s l}:=$ StieltjesGamma[s]

$$
\begin{aligned}
& \mathrm{g}_{x}\left[\frac{5}{4}\right]:=\operatorname{If}\left[x=0,1, \sum_{\mathrm{k}=1}^{r} \operatorname{BellY}\left[x, \mathrm{k}, \operatorname{Tbl} \psi\left[r, \frac{5}{4}\right]\right]\right] \\
& \mathrm{C}_{r_{-}}:=\operatorname{If}\left[x=0,1, \frac{2}{\operatorname{Zeta}[1 / 2]} \sum_{\mathrm{s}=r}^{1000}(-1\rangle^{r} \frac{\gamma_{\mathrm{s}-1}}{\langle\mathrm{~s}-1\rangle!} \operatorname{Binomial}[\mathrm{s}, \mathrm{I}]\left(\frac{1}{2}\right)^{\mathrm{s}-r}\right]
\end{aligned}
$$

$$
\mathrm{A}_{r_{-}}:=\sum_{\mathrm{s}=0}^{r} \sum_{\mathrm{t}=0}^{\mathrm{s}}(-1)^{r-s} \frac{\log [\pi]^{r-s}}{2^{r-s}(r-s)!} \frac{\mathrm{g}_{\mathrm{s}-\mathrm{t}}[5 / 4]}{2^{s-t}(s-t\rangle!} \mathrm{c}_{\mathrm{t}}
$$

SetPrecision $\left[\left\{A_{2}, A_{4}, A_{6}, A_{8}\right\}, 13\right]$
$\left\{0.02310499312,0.000248334054,1.674353 \times 10^{-6}, 8.0307 \times 10^{-9}\right\}$

```
SetPrecision[{A A, A A , A5, A A }, 13]
```


10.2.2 Vieta's Formulas on $\Xi(z)$

Theorem 10.2.2
Let completed Riemann zeta $\Xi(z)$ and the Maclaurin series are as follows.

$$
\begin{align*}
\Xi(z) & =-\left(\frac{1}{2}+z\right)\left(\frac{1}{2}-z\right) \pi^{-\frac{1}{2}\left(\frac{1}{2}+z\right)} \Gamma\left\{\frac{1}{2}\left(\frac{1}{2}+z\right)\right\} \zeta\left(\frac{1}{2}+z\right) \tag{2.0}\\
& =\Xi(0)\left(1+B_{1} z^{1}+B_{2} z^{2}+B_{3} z^{3}+B_{4} z^{4}+\cdots\right)
\end{align*}
$$

Then,
(1) The following expressions hold for non-trivial zeros $z_{k}=x_{k} \pm i y_{k}, y_{k} \neq 0 \quad k=1,2,3, \cdots$ of $\zeta(z)$.

$$
\begin{aligned}
& \Xi(0)=\prod_{n=1}^{\infty} \frac{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}{x_{n}^{2}+y_{n}^{2}}=-\frac{1}{4 \pi^{1 / 4}} \Gamma\left(\frac{1}{4}\right) \zeta\left(\frac{1}{2}\right)=0.9942415563 \cdots \\
& B_{1}=-\sum_{r_{1}=1}^{\infty} \frac{2\left(x_{r_{1}}-1 / 2\right)}{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}} \\
& B_{2}=\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2}\left(x_{r_{1}}-1 / 2\right)\left(x_{r_{2}}-1 / 2\right)}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}}+\sum_{r_{1}=1}^{\infty} \frac{2^{0}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}} \\
& B_{3}=-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1 r_{3}=r_{2}+1}^{\infty} \sum_{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}\left\{\left(x_{r_{3}}-1 / 2\right)^{2}+y_{r_{3}}^{2}\right\}}^{2^{3}\left(x_{r_{1}}-1 / 2\right)\left(x_{r_{2}}-1 / 2\right)\left(x_{r_{3}}-1 / 2\right)} \\
& -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1}\left\{\left(x_{r_{1}}-1 / 2\right)+\left(x_{r_{2}}-1 / 2\right)\right\}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}} \\
& B_{4}=\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \ldots \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{4}\left(x_{r 1}-1 / 2\right)\left(x_{r 2}-1 / 2\right) \cdots\left(x_{r 4}-1 / 2\right)}{\left\{\left(x_{r 1}-1 / 2\right)^{2}+y_{r 1}^{2}\right\}\left\{\left(x_{r 2}-1 / 2\right)^{2}+y_{r 2}^{2}\right\} \cdots\left\{\left(x_{r 4}-1 / 2\right)^{2}+y_{r 4}^{2}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2}\left\{\left(x_{r_{1}}-1 / 2\right)\left(x_{r 2}-1 / 2\right)+\cdots+\left(x_{r 2}-1 / 2\right)\left(x_{r 3}-1 / 2\right)\right\}}{\left.\left\{x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}\left\{\left(x_{r_{3}}-1 / 2\right)^{2}+y_{r_{3}}^{2}\right\}} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}}
\end{aligned}
$$

(2) When A_{n} is a coefficient in Theorem 10.2.1, $B_{n}=A_{n} \quad n=1,2,3, \cdots$.

Proof

(1) According to Theorem 8.4.1 in " 08 Factorization of Completed Riemann Zeta)", when the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_{k}=x_{k} \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$, completed zeta (2.0) is factored as follows.

$$
\begin{aligned}
& \Xi(z)=\Xi(0) \prod_{n=1}^{\infty}\left\{1-\frac{2\left(x_{n}-1 / 2\right) z}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}+\frac{z^{2}}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}\right\} \\
& \text { Where, } \Xi(0)=\prod_{n=1}^{\infty} \frac{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}{x_{n}^{2}+y_{n}^{2}}=-\frac{1}{4 \pi^{1 / 4}} \Gamma\left(\frac{1}{4}\right) \zeta\left(\frac{1}{2}\right)=0.9942415563 \cdots
\end{aligned}
$$

On the other hand, according to Formula 3.5 .1 in " 03 Vieta's Formulas in Infinite-degree Equation" (Infinitedegree Equation), an infinite product

$$
f(z)=\prod_{n=1}^{\infty}\left\{1-\frac{2\left(x_{n}-1 / 2\right) z}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}+\frac{z^{2}}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}\right\}
$$

is expanded in the Maclaurin series as follows

$$
f(z)=1+B_{1} z^{1}+B_{2} z^{2}+B_{3} z^{3}+B_{4} z^{4}+\cdots
$$

Where,

$$
\begin{aligned}
B_{1}= & -\sum_{r_{1}=1}^{\infty} \frac{2\left(x_{r_{1}}-1 / 2\right)}{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}} \\
B_{2}= & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2}\left(x_{r_{1}}-1 / 2\right)\left(x_{r_{2}}-1 / 2\right)}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}}+\sum_{r_{1}=1}^{\infty} \frac{2^{0}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}} \\
B_{3}=- & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1 r_{3}=r_{2}=1}^{\infty} \sum_{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}\left\{\left(x_{r_{3}}-1 / 2\right)^{2}+y_{r_{3}}^{2}\right\}}^{2} \\
& -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1}\left\{\left(x_{r_{1}}-1 / 2\right)+\left(x_{r_{2}}-1 / 2\right)\right\}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}} \\
B_{4}= & \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \ldots \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{4}\left(x_{r 1}-1 / 2\right)\left(x_{r 2}-1 / 2\right) \cdots\left(x_{r 4}-1 / 2\right)}{\left\{\left(x_{r 1}-1 / 2\right)^{2}+y_{r 1}^{2}\right\}\left\{\left(x_{r 2}-1 / 2\right)^{2}+y_{r 2}^{2}\right\} \cdots\left\{\left(x_{r 4}-1 / 2\right)^{2}+y_{r 4}^{2}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2}\left\{\left(x_{r_{1}}-1 / 2\right)\left(x_{r 2}-1 / 2\right)+\cdots+\left(x_{r_{2}}-1 / 2\right)\left(x_{r_{3}}-1 / 2\right)\right\}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}\left\{\left(x_{r_{3}}-1 / 2\right)^{2}+y_{r_{3}}^{2}\right\}} \\
& +\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left\{\left(x_{r_{1}}-1 / 2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1 / 2\right)^{2}+y_{r_{2}}^{2}\right\}}
\end{aligned}
$$

Since $\boldsymbol{\Xi}(z)=\Xi(0) f(z),(1)$ holds.
(2) Due to the uniqueness of the power series, it has to be $B_{n}=A_{n} \quad n=1,2,3, \cdots$.
Q.E.D.

10.2.3 Proposition2 equivalent to the Riemann Hypothesis

If Riemann Hypothesis is true, the following proposition has to hold.

Proposition 10.2.3

When the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_{k}=1 / 2 \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$, the following expressions hold.

$$
\begin{align*}
& \sum_{r_{1}=1}^{\infty} \frac{1}{y_{r 1}^{2}}=A_{2}=0.0231049931 \cdots \tag{2}\\
& \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{1}{y_{r_{1}}^{2} y_{r_{2}}^{2}}=A_{4}=0.0002483340 \cdots \tag{4}\\
& \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{1}{y_{r_{1}}^{2} y_{r_{2}}^{2} y_{r_{3}}^{2}}=A_{6}=0.00000167435 \cdots \tag{6}\\
& \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1 r_{4}=r_{3}+1}^{\infty} \frac{1}{\sum_{r_{1}}^{2} y_{r_{2}}^{2} y_{r_{3}}^{2} y_{r_{4}}^{2}}=A_{8}=8.030697 \times 10^{-9} \tag{8}\\
& \quad \vdots \\
& \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \ldots \sum_{r_{2 n}=r_{2 n-1}+1}^{\infty} \frac{1}{y_{r_{1}}^{2} y_{r_{2}}^{2} \cdots y_{r_{2 n}}^{2}}=A_{2 n} \tag{2n}\\
& =\sum_{s=0}^{2 n} \sum_{t=0}^{s}(-1)^{2 n-s} \frac{\log ^{2 n-s} \pi}{2^{2 n-s}(r-s)!} \frac{g_{s-t}(5 / 4)}{2^{s-t}(s-t)!} c_{t}
\end{align*}
$$

Where, $\psi_{n}(z)$ is the polygamma function, $B_{n, k}\left(f_{1}, f_{2}, \ldots\right)$ is Bell polynomials, γ_{r} is Stieltjes constant,

$$
\begin{aligned}
& g_{r}\left(\frac{5}{4}\right)=\left\{\begin{array}{cc}
1 & r=0 \\
\sum_{k=1}^{r} B_{r, k}\left(\psi_{0}\left(\frac{5}{4}\right), \psi_{1}\left(\frac{5}{4}\right), \ldots, \psi_{r-1}\left(\frac{5}{4}\right)\right) & r=1,2,3, \cdots \\
r=0
\end{array}\right. \\
& c_{r}= \begin{cases}1 & 2 \\
\frac{2}{\zeta(1 / 2)} \sum_{s=r}^{\infty}(-1)^{r} \frac{\gamma_{s-1}}{(s-1)!}\binom{s}{r}\left(\frac{1}{2}\right)^{s-r} & r=1,2,3, \cdots\end{cases}
\end{aligned}
$$

Proof of equivalence

If the Riemann hypothesis holds, The real part of the non-trivial zeros $z_{k}=x_{k} \pm i y_{k}$ of $\zeta(z)$ is $x_{k}=1 / 2$ $(k=1,2,3, \cdots)$. Substituting this for each expressions in Theorem10.2.2 and replacing B_{r} with A_{r}, we obtain the desired expressions. According to Theorem 8.2.4 ("08 Factorization of Completed Riemann Zeta"), $\left(2.3_{2}\right)$ is equivalent to Riemann Hypothesis. Since $\left(2.3_{4}\right) \sim\left(2.3_{2 n}\right)$ contain $\left(2.3_{2}\right)$ in some way, they must also be equivalent to Riemann Hypothesis respectively.

Direct Calculation

Both sides of $\left(2.3_{2}\right),\left(2.3_{4}\right)$ and $\left(2.3_{6}\right)$ are calculated with formula manipulation software Mathematica, it is as follows, B_{2} is calculated in 100,000 terms and is matched up to the 3th decimal place, B_{4} is calculated in each 3,000 terms and is matched up to the 5 th decimal place, B_{6} is calculated in each 300 terms and is matched up to the 6th decimal place

$$
\begin{aligned}
& \mathrm{Y}_{r} \quad:=\operatorname{Im}[\text { ZetaZero[r]] } \\
& \mathrm{B}_{2}\left[m_{-}\right]:=\sum_{\mathrm{r}=1}^{\mathrm{m}} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{2}} \quad \begin{array}{lll}
\mathrm{N}\left[\mathrm{~B}_{2}[100000]\right] & \mathrm{N}\left[\mathrm{~A}_{2}\right] \\
0.0230829 & 0.023105
\end{array} \\
& \mathrm{~B}_{4}\left[m_{-}\right]:=\sum_{\mathrm{r}=1}^{\mathrm{m}} \sum_{\mathrm{s}=\mathrm{r}+1}^{\mathrm{m}} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{2} \mathrm{y}_{\mathrm{s}}{ }^{2}} \quad \begin{array}{lll}
\mathrm{N}\left[\mathrm{~B}_{4}[3000]\right] & \mathrm{N}\left[\mathrm{~A}_{4}\right] \\
0.000240759 & 0.000248334
\end{array} \\
& \mathrm{~B}_{6}\left[m_{-}\right]:=\sum_{\mathrm{r}=1}^{m} \sum_{\mathrm{s}=\mathrm{r}+1}^{m} \sum_{\mathrm{t}=\mathrm{s}+1}^{m} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{2} \mathrm{y}_{\mathrm{s}}{ }^{2} \mathrm{y}_{\mathrm{t}}{ }^{2}} \quad \begin{array}{lll}
\mathrm{N}\left[\mathrm{~B}_{6}[300]\right] & \mathrm{N}\left[\mathrm{~A}_{6}\right] \\
1.30603 \times 10^{-6} & 1.67435 \times 10^{-6}
\end{array}
\end{aligned}
$$

Indirect Calculation

Here, $\left(2.3_{2}\right)$ is not calculated and $B_{2}=A_{2}=0.02310499311 \cdots$ is assumed. And using this, the left side of $\left(2.3_{4}\right) \sim\left(2.3_{8}\right)$ are calculated indirectly.

According to Formula 1.3 .1 in " 01 Power of Infinite Series" (Infinite-degree Equation) ,

$$
\begin{align*}
\left(\sum_{r=0}^{\infty} a_{r}\right)^{2}= & \sum_{r=0}^{\infty} a_{r}^{2}+2 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s} \tag{3.2}\\
\left(\sum_{r=0}^{\infty} a_{r}\right)^{3}= & \sum_{r=0}^{\infty} a_{r}^{3}+3 \sum_{r=0}^{\infty} a_{r} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s}-3 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_{r} a_{s} a_{t} \tag{3.3}\\
\left(\sum_{r=0}^{\infty} a_{r}\right)^{4}= & 2 \sum_{r=0}^{\infty} a_{r}^{4}-\left(\sum_{r=0}^{\infty} a_{r}^{2}\right)^{2}+4\left(\sum_{r=0}^{\infty} a_{r}\right)^{2} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r} a_{s} \\
& -8 \sum_{r=0}^{\infty} a_{r} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_{r} a_{s} a_{t}+8 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} a_{r} a_{s} a_{t} a_{u} \tag{3.4}
\end{align*}
$$

Replacing $r=0$ with $r=1$ and a_{r} with $1 / y_{r}^{2}$,

$$
\left(\sum_{r=0}^{\infty} \frac{1}{y_{r}^{2}}\right)^{2}=\sum_{r=0}^{\infty}\left(\frac{1}{y_{r}^{2}}\right)^{2}+2 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2}}
$$

$$
\begin{aligned}
\left(\sum_{r=0}^{\infty} \frac{1}{y_{r}^{2}}\right)^{3}= & \sum_{r=0}^{\infty}\left(\frac{1}{y_{r}^{2}}\right)^{3}+3 \sum_{r=0}^{\infty} \frac{1}{y_{r}^{2}} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2}}-3 \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2}} \\
\left(\sum_{r=1}^{\infty} \frac{1}{y_{r}^{2}}\right)^{4}= & 2 \sum_{r=1}^{\infty}\left(\frac{1}{y_{r}^{2}}\right)^{4}-\left\{\sum_{r=1}^{\infty}\left(\frac{1}{y_{r}^{2}}\right)^{2}\right\}^{2}+4\left(\sum_{r=1}^{\infty} \frac{1}{y_{r}^{2}}\right)^{2} \cdot \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2}} \\
& -8 \sum_{r=1}^{\infty} \frac{1}{y_{r}^{2}} \cdot \sum_{r=1}^{\infty} \sum_{s=r+1 t=s+1}^{\infty} \sum_{r=1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2}}+8 \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1 u=t+1}^{\infty} \sum_{1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2} y_{u}^{2}}
\end{aligned}
$$

Substituting $\left(2.3_{2}\right) \sim\left(2.3_{8}\right)$ for these,

$$
\begin{align*}
A_{2}^{2} & =\sum_{r=0}^{\infty} \frac{1}{y_{r}^{4}}+2 A_{4} \tag{w4}\\
A_{2}^{3} & =\sum_{r=0}^{\infty} \frac{1}{y_{r}^{6}}+3 A_{2} A_{4}-3 A_{6} \tag{w6}\\
A_{2}^{4} & =2 \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}-\left(\sum_{r=1}^{\infty} \frac{1}{y_{r}^{4}}\right)^{2}+4 A_{2}^{2} A_{4}-8 A_{2} A_{6}+8 A_{8} \\
& =2 \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}-\left(A_{2}^{2}-2 A_{4}\right)^{2}+4 A_{2}^{2} A_{4}-8 A_{2} A_{6}+8 A_{8}
\end{align*}
$$

i.e.

$$
\begin{equation*}
A_{2}^{4}=\sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}-2 A_{4}^{2}+4 A_{2}^{2} A_{4}-4 A_{2} A_{6}+4 A_{8} \tag{w8}
\end{equation*}
$$

From (w4), (w6), (w8),

$$
\begin{aligned}
& A_{4}=-\frac{1}{2} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{4}}+\frac{1}{2} A_{2}^{2} \quad, \quad A_{6}=\frac{1}{3} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{6}}-\frac{1}{3} A_{2}^{3}+A_{2} A_{4} \\
& A_{8}=-\frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}+\frac{1}{4} A_{2}^{4}+\frac{1}{2} A_{4}^{2}-A_{2}^{2} A_{4}+A_{2} A_{6}
\end{aligned}
$$

Since $A_{n}=B_{n} \quad n=1,2,3, \cdots$,

$$
\begin{align*}
& B_{4}=-\frac{1}{2} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{4}}+\frac{1}{2} A_{2}^{2} \tag{4}\\
& B_{6}=\frac{1}{3} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{6}}-\frac{1}{3} A_{2}^{3}+A_{2} A_{4} \tag{6}\\
& B_{8}=-\frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}+\frac{1}{4} A_{2}^{4}+\frac{1}{2} A_{4}^{2}-A_{2}^{2} A_{4}+A_{2} A_{6} \tag{2.38'}
\end{align*}
$$

We should just calculate (2.34'), (2.36') and (2.38') instead of

$$
B_{4}=\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2}}, \quad B_{6}=\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2}}, \quad B_{8}=\sum_{r=1}^{\infty} \sum_{s=r+1 t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2} y_{u}^{2}}
$$

The calculation results with the formula manipulation software Mathematica are as follows. B_{4} is calculated in 500 terms and is matched up to the 9 th decimal place, B_{6} is calculated in 30 terms and is matched up to the 11th decimal place, and B_{8} is calculated in 20 terms and is matched up to the 13th decimal place. The speed of these convergence are much faster than the direct calculations above.

$$
\begin{array}{lll}
\mathrm{B}_{4}\left[m_{-}\right]:=-\frac{1}{2} \sum_{\mathrm{r}=1}^{m} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{4}}+\frac{\mathrm{A}_{2}{ }^{2}}{2} & \mathrm{~N}\left[\mathrm{~B}_{4}[500]\right] & \mathrm{N}\left[\mathrm{~A}_{4}\right] \\
\mathrm{B}_{6}\left[m_{-}\right]:=\frac{1}{3} \sum_{\mathrm{r}=1}^{m} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{6}}+\mathrm{A}_{2} \mathrm{~A}_{4}-\frac{\mathrm{A}_{2}{ }^{3}}{3} & \mathrm{~N}\left[\mathrm{~B}_{6}[30]\right] & 0.000248334
\end{array}
$$

(w4), (w6) and (w8) also can be represented as follows.

Proposition 10.2.3'

When $z_{k}=1 / 2 \pm i y_{k}, y_{k} \neq 0(k=1,2,3, \cdots)$ are the non-trivial zeros of Riemann zeta $\zeta(z)$ and $A_{r} \quad r=1,2,3, \cdots$ are constants given by Theorem 10.2.1, the following expressions hold.

$$
\begin{aligned}
& \sum_{r=1}^{\infty} \frac{1}{y_{r}^{4}}=A_{2}^{2}-2 A_{4}=0.00003717259 \cdots \\
& \sum_{r=1}^{\infty} \frac{1}{y_{r}^{6}}=A_{2}^{3}-3 A_{2} A_{4}+3 A_{6}=0.00000014417393 \cdots \\
& \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}}=A_{2}^{4}+2 A_{4}^{2}-4 A_{2}^{2} A_{4}+4 A_{2} A_{6}-4 A_{8}=6.6303 \times 10^{-10}
\end{aligned}
$$

The calculation results with the formula manipulation software Mathematica are as follows. Higher precision is required for calculation of the right side.

$$
\begin{aligned}
& \mathrm{y}_{r_{-}}:=\operatorname{Im}[\text { ZetaZero }[\mathrm{r}]] \\
& \mathrm{N}\left[\left\{\sum_{\mathrm{r}=1}^{2000} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{4}}, \mathrm{~A}_{2}{ }^{2}-2 \mathrm{~A}_{4}\right\}, 7\right] \\
& \{0.00003717258,0.0000371726\} \\
& \mathrm{N}\left[\left\{\sum_{\mathrm{r}=1}^{100} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{6}}, \mathrm{~A}_{2}{ }^{3}-3 \mathrm{~A}_{2} \mathrm{~A}_{4}+3 \mathrm{~A}_{6}\right\}, 7\right] \\
& \left\{1.441738 \times 10^{-7}, 1.44174 \times 10^{-7}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}\left[\left\{\sum_{\mathrm{r}=1}^{25} \frac{1}{\mathrm{y}_{\mathrm{r}}{ }^{8}}, \mathrm{~A}_{2}{ }^{4}+2 \mathrm{~A}_{4}{ }^{2}-4 \mathrm{~A}_{2}{ }^{2} \mathrm{~A}_{4}+4 \mathrm{~A}_{2} \mathrm{~A}_{6}-4 \mathrm{~A}_{8}\right\}, 10\right] \\
& \left\{6.63030429 \times 10^{-10}, 6.63032 \times 10^{-10}\right\}
\end{aligned}
$$

As far as the above calculation results are concerned, the Riemann hypothesis seems to be true.
2018.09.12
2018.09.19 Added the 4th power and the 8th power.

Alien's Mathematics

