10 Vieta's Formulas on Completed Riemann Zeta

In the previous chapter, Maclaurin series of the completed Riemann zeta was obtained. If we put the series as 0, it is an infinite-degree equation. As seen in Chap.8, completed Riemann zeta is completely factored by the roots (zeros). So, the relationship between zeros (roots) and coefficients is obtained by Vieta's formula.

10.1 Zeros and Coefficients on $\xi(z)$

10.1.1 Coefficients of Maclaurin series of $\xi(z)$

Maclaurin series of the completed Riemann zeta $\xi(z)$ was obtained by Theorem 9.1.3 in previous chapter. When this is slightly modified and reprinted, it is as follows.

Theorem 10.1.1

Let completed Riemann zeta $\xi(z)$ and the Maclaurin series are as follows.

$$\xi(z) = -z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \sum_{r=0}^{\infty} A_r z^r$$
(1.0)

Then, these coefficients A_r $r=0, 1, 2, 3, \cdots$ are given by

$$A_{r} = \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log^{r-s} \pi}{2^{r-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t}(3/2)}{2^{s-t} (s-t)!} c_{t}$$
(1.a)

Where, $\psi_n(z)$ is the polygamma function, $B_{n,k}(f_1, f_2, ...)$ is Bell polynomials, γ_r is Stieltjes constant,

$$g_{r}\left(\frac{3}{2}\right) = \begin{cases} 1 & r = 0\\ \sum_{k=1}^{r} B_{r,k}\left(\psi_{0}\left(\frac{3}{2}\right), \psi_{1}\left(\frac{3}{2}\right), \dots, \psi_{r-1}\left(\frac{3}{2}\right)\right) & r = 1, 2, 3, \cdots \end{cases}$$
$$c_{r} = \begin{cases} 1 & r = 0\\ -\frac{\gamma_{r-1}}{(r-1)!} & r = 1, 2, 3, \cdots \end{cases}$$

The first 4 are as follows.

$$\begin{split} A_{0} &= \frac{\log^{0} \pi}{2^{0} \, 0!} \frac{(-1)^{0} g_{0}(3/2)}{2^{0} \, 0!} c_{0} = 1 \\ A_{1} &= \frac{\log^{1} \pi}{2^{1} 1!} - \frac{g_{1}(3/2)}{2^{1} 1!} - \frac{\gamma_{0}}{0!} \\ A_{2} &= \frac{\log^{2} \pi}{2^{2} 2!} + \frac{g_{2}(3/2)}{2^{2} 2!} - \frac{\gamma_{1}}{1!} - \frac{\log^{1} \pi}{2^{1} 1!} \frac{g_{1}(3/2)}{2^{1} 1!} + \frac{g_{1}(3/2)}{2^{1} 1!} \frac{\gamma_{0}}{0!} - \frac{\log^{1} \pi}{2^{1} 1!} \frac{\gamma_{0}}{0!} \\ A_{3} &= \frac{\log^{3} \pi}{2^{3} 3!} - \frac{g_{3}(3/2)}{2^{3} 3!} - \frac{\gamma_{2}}{2!} - \frac{\log^{2} \pi}{2^{2} 2!} \frac{g_{1}(3/2)}{2^{1} 1!} - \frac{\log^{2} \pi}{2^{2} 2!} \frac{g_{1}(3/2)}{2^{1} 1!} + \frac{\log^{2} \pi}{2^{2} 2!} \frac{\gamma_{0}}{0!} - \frac{g_{2}(3/2)}{2^{2} 2!} \frac{\gamma_{0}}{0!} \\ &+ \frac{\log^{1} \pi}{2^{1} 1!} \frac{g_{2}(3/2)}{2^{2} 2!} - \frac{\log^{1} \pi}{2^{1} 1!} \frac{\gamma_{1}}{1!} + \frac{g_{1}(3/2)}{2^{1} 1!} \frac{\gamma_{1}}{1!} + \frac{\log^{1} \pi}{2^{1} 1!} \frac{g_{1}(3/2)}{2!} \frac{\gamma_{0}}{0!} \end{split}$$

When $A_1 \sim A_4$ are calculated with the formula manipulation software *Mathematica*, it is as follows. Tbl ψ [r_- , z_-] := Table[PolyGamma[k, z], {k, 0, r-1}] g_{r_-} [$\frac{3}{2}$] := If[$r = 0, 1, \sum_{k=1}^{r} \text{BellY}$ [$r, k, \text{Tbl}\psi$ [$r, \frac{3}{2}$]]] γ_{s_-} := StieltjesGamma[s] c_{r_-} := If[$r = 0, 1, -\frac{\gamma_{r-1}}{(r-1)!}$] A_{r_-} := $\sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\text{Log}[\pi]^{r-s}}{2^{r-s}(r-s)!} \frac{(-1)^{s-t}g_{s-t}[3/2]}{2^{s-t}(s-t)!} c_t$

SetPrecision[{A₁, A₂, A₃, A₄}, 12]
{-0.02309570897, 0.02334386453, -0.00049798385, 0.00025318173}

10.1.2 Vieta's Formulas on $\xi(z)$

Theorem 10.1.2

Let completed Riemann zeta $\xi(z)$ and the Maclaurin series are as follows.

$$\xi(z) = -z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \sum_{r=0}^{\infty} B_r z^r$$
(1.0)

Then,

(1) The following expressions hold for non-trivial zeros $z_k = x_k \pm i y_k$, $y_k \neq 0$, $k = 1, 2, 3, \cdots$ of $\zeta(z)$.

$$\begin{split} B_{1} &= -\sum_{r_{1}=1}^{\infty} \frac{2x_{r_{1}}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \\ B_{2} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} + \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \\ B_{3} &= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} \\ B_{4} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{2} \left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right) \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)} \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2} \left(x_{r_{1}} x_{r_{2}} + x_{r_{1}} x_{r_{3}} + x_{r_{2}} x_{r_{3}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{3}}^{2}\right)} \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} \\ &= \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}$$

$$\begin{split} B_{2n-1} &= -\sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_{2n-1} = r_{2n-2} + 1}^{\infty} \frac{2^{2n-1} x_{r_1} x_{r_2} \cdots x_{r_{2n-1}}}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-1}}^2 + y_{r_{2n-1}}^2\right)} \\ &- \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_{2n-2} = r_{2n-3} + 1}^{\infty} \frac{2^{2n-3} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-3}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-2}} + \cdots + x_{r_2} x_{r_3} \cdots x_{r_{2n-2}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-2}}^2 + y_{r_{2n-2}}^2\right)} \right)} \\ &\vdots \\ &- \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_n = r_{n-1} + 1}^{\infty} \frac{2^{1} \left(x_{r_1} + x_{r_2} + \cdots + x_{r_n}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_n}^2 + y_{r_n}^2\right)} \\ &B_{2n} &= \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_{2n-1} = r_{2n-1} + 1}^{\infty} \frac{2^{2n-2} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-2}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-1}} + \cdots + x_{r_2} x_{r_3} \cdots x_{r_{2n-1}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n}}^2 + y_{r_{2n}}^2\right)} \\ &+ \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_{2n-1} = r_{2n-2} + 1}^{\infty} \frac{2^{2n-2} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-2}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-1}} + \cdots + x_{r_2} x_{r_3} \cdots x_{r_{2n-1}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n}}^2 + y_{r_{2n}}^2\right)} \\ &\vdots \\ &+ \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_n = r_{n-1} + 1}^{\infty} \frac{2^{2n-2} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-2}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-1}} + \cdots + x_{r_2} x_{r_3} \cdots x_{r_{2n-1}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-1}}^2 + y_{r_{2n-1}}^2\right)} \\ &\vdots \\ &+ \sum_{r_1 \equiv 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_n = r_{n-1} + 1}^{\infty} \frac{2^{0} \left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_n}^2 + y_{r_n}^2\right)} \\ &= \sum_{r_1 = 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_n = r_{n-1} + 1}^{\infty} \frac{2^{0} \left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_n}^2 + y_{r_n}^2\right)} \\ &= \sum_{r_1 = 1}^{\infty} \sum_{r_2 = r_1 + 1}^{\infty} \cdots \sum_{r_n = r_{n-1} + 1}^{\infty} \frac{2^{0} \left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_n}^2 + y_{r_n$$

(2) When A_n is a coefficient in **Theorem 10.1.1**, $B_n = A_n$, $n = 1, 2, 3, \cdots$.

Proof

(1) According to Theorem 8.3.1 in "08 Factorization of Completed Riemann Zeta ", when the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_k = x_k \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$), completed zeta (1.0) is factored as follows.

$$\xi(z) = \prod_{n=1}^{\infty} \left(1 - \frac{2x_n z}{x_n^2 + y_n^2} + \frac{z^2}{x_n^2 + y_n^2} \right)$$

On the other hand, according to Formula 3.5.1 in " 03 Vieta's Formulas in Infinite-degree Equation " (Infinite-degree Equation), such an infinite product $\xi(z)$ is expanded in the Maclaurin series as follows

$$\xi(z) = 1 + B_1 z^1 + B_2 z^2 + B_3 z^3 + B_4 z^4 + \cdots$$

Where,

$$B_{1} = -\sum_{r_{1}=1}^{\infty} \frac{2x_{r_{1}}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}}$$

$$B_{2} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} + \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}}$$

$$B_{3} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}}^{1} + x_{r_{2}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}}^{1} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}}^{1} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}}^{2} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)}}$$

$$\begin{split} B_4 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \sum_{r_4=r_3+1}^{\infty} \frac{2^4 x_{r_1} x_{r_2} x_{r_3} x_{r_4}}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \left(x_{r_3}^2 + y_{r_3}^2\right) \left(x_{r_4}^2 + y_{r_4}^2\right)} \\ &+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \frac{2^2 \left(x_{r_1} x_{r_2} + x_{r_1} x_{r_3} + x_{r_2} x_{r_3}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \left(x_{r_3}^2 + y_{r_3}^2\right)} \\ &+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{2^0}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right)} \\ &\vdots \end{split}$$

(2) Due to the uniqueness of the power series, it has to be $B_n = A_n$ $n = 1, 2, 3, \cdots$.

10.1.3 Proposition1 equivalent to the Riemann Hypothesis

If Riemann Hypothesis is true, the following proposition has to hold.

Proposition 10.1.3

When the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_k = 1/2 \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$), the following expressions hold.

$$\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2} = -A_1 = 0.0230957089 \dots$$
(1.3)

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right)} = A_2 + A_1 = 0.0002481555\cdots$$
(1.32)

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right)} = -A_3 - 2(A_2 + A_1)$$

= 0.0000016727... (1.3₃)

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right) \left(1/4 + y_u^2\right)} = A_4 + 3A_3 + 5(A_2 + A_1) = 8.021073428 \times 10^{-9}$$
(1.34)

Where, $\psi_n(z)$ is the polygamma function, $B_{n,k}(f_1, f_2, ...)$ is Bell polynomials, γ_r is Stieltjes constant,

$$\begin{split} A_{r} &= \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log^{r-s} \pi}{2^{r-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t}(3/2)}{2^{s-t} (s-t)!} c_{t} \\ g_{r} \left(\frac{3}{2}\right) &= \begin{cases} 1 & r=0 \\ \sum_{k=1}^{r} B_{r,k} \left(\psi_{0} \left(\frac{3}{2}\right), \psi_{1} \left(\frac{3}{2}\right), \dots, \psi_{r-1} \left(\frac{3}{2}\right)\right) & r=1, 2, 3, \cdots \\ c_{r} &= \begin{cases} 1 & r=0 \\ -\frac{\gamma_{r-1}}{(r-1)!} & r=1, 2, 3, \cdots \end{cases} \end{split}$$

Proof of equivalence

If the Riemann hypothesis holds, The real part of the non-trivial zeros $z_k = x_k \pm i y_k$ of $\zeta(z)$ is $x_k = 1/2$ ($k = 1, 2, 3, \cdots$). Substituting this for $B_1 \sim B_4$ in Theorem 10.1.2,

$$\begin{split} B_{1} &= -\sum_{r=1}^{\infty} \frac{1}{1/4 + y_{r}^{2}} \\ B_{2} &= \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right)} + \sum_{r=1}^{\infty} \frac{1}{1/4 + y_{r}^{2}} \\ B_{3} &= -\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right) \left(1/4 + y_{t}^{2}\right)} - \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{2}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right)} \\ B_{4} &= \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right) \left(1/4 + y_{s}^{2}\right) \left(1/4 + y_{t}^{2}\right)} \\ &+ \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{3}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right) \left(1/4 + y_{t}^{2}\right)} \\ &+ \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_{r}^{2}\right) \left(1/4 + y_{s}^{2}\right)} \end{split}$$

Since $B_n = A_n$ $n = 1, 2, 3, \cdots$ from Theorem 10.1.2 (2), replacing $B_1 \sim B_4$ with $A_1 \sim A_4$ and substituting a top one by one downward,

$$A_{1} = -\sum_{r=1}^{\infty} \frac{1}{1/4 + y_{r}^{2}}$$

$$A_{2} = \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{(1/4 + y_{r}^{2})(1/4 + y_{s}^{2})} - A_{1}$$

$$A_{3} = -\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{(1/4 + y_{r}^{2})(1/4 + y_{s}^{2})(1/4 + y_{t}^{2})} - 2(A_{2} + A_{1})$$

$$A_{4} = \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{(1/4 + y_{r}^{2})(1/4 + y_{s}^{2})(1/4 + y_{t}^{2})(1/4 + y_{u}^{2})} - 3A_{3} - 5(A_{2} + A_{1})$$

From these, we obtain $(1.3_2) \sim (1.3_4)$. By **Theorem 8.2.4** (**" 08 Factorization of Completed Riemann Zeta ")**, (1.3₁) is equivalent to Riemann Hypothesis. Since $(1.3_2) \sim (1.3_3)$ contain (1.3_1) in some way, they must also be equivalent to Riemann Hypothesis respectively.

Q.E.D.

Direct Calculation

Since (1.3_1) has already been calculated in the previous chapter **8.2**, it is not calculated here. Both sides of (1.3_2) and (1.3_3) are calculated with the formula manipulation software *Mathematica*, it is as follows, f_2 is calculated in each 3000 terms and is matched up to the 5th decimal place, f_3 is calculated in each 300 terms and is matched up to the 6th decimal place

 $y_{r_{-}} := Im[ZetaZero[r]]$ $f_{2}[m_{-}] := \sum_{r=1}^{m} \sum_{s=r+1}^{m} \frac{1}{(1/4 + y_{r}^{2})(1/4 + y_{s}^{2})}$ $N[f_{2}[3000]] \qquad N[A_{2} + A_{1}]$ $0.000240583 \qquad 0.000248156$ $f_{3}[m_{-}] := \sum_{r=1}^{m} \sum_{s=r+1}^{m} \sum_{t=s+1}^{m} \frac{1}{(1/4 + y_{r}^{2})(1/4 + y_{s}^{2})(1/4 + y_{t}^{2})}$ $N[f_{3}[300]] \qquad N[-A_{3} - 2(A_{2} + A_{1})]$ $1.304663 \times 10^{-6} \qquad 1.67271 \times 10^{-6}$

Indirect Calculation

The direct calculations of $(1.3_2) \sim (1.3_4)$ are so slow in convergence. So, we calculate these indirectly using the following formula. (See Formula 1.3.1 in "01 Power of Infinite Series "(Infinite-degree Equation))

$$\left(\sum_{r=0}^{\infty} a_r\right)^2 = \sum_{r=0}^{\infty} a_r^2 + 2\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_r a_s$$
(3.2)

$$\left(\sum_{r=0}^{\infty} a_r\right)^3 = \sum_{r=0}^{\infty} a_r^3 + 3\sum_{r=0}^{\infty} a_r \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_r a_s - 3\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_r a_s a_t$$
(3.3)

$$\left(\sum_{r=0}^{\infty} a_{r}\right)^{4} = 2\sum_{r=0}^{\infty} a_{r}^{4} - \left(\sum_{r=0}^{\infty} a_{r}^{2}\right)^{2} + 4\left(\sum_{r=0}^{\infty} a_{r}\right)^{2} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_{r}a_{s} - 8\sum_{r=0}^{\infty} a_{r} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_{r}a_{s}a_{t} + 8\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} a_{r}a_{s}a_{t}a_{u}$$
(3.4)

Applying (3.2) to (1.3_2) ,

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right)} = \frac{1}{2} \left\{ \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2}\right)^2 - \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^2 \right\}$$

Substituting (1.3_1) for the right hand,

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right)} = -\frac{1}{2} \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^2 + \frac{A_1^2}{2}$$
(1.32)

Applying (3.3) to (1.3_3) ,

$$\begin{split} \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right)} &= \frac{1}{3} \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^3 \\ &+ \sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2} \cdot \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right)} - \frac{1}{3} \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2}\right)^3 \end{split}$$

Substituting (1.3_1) and (1.3_2) for the right hand,

$$\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(\frac{1}{4}+y_{r}^{2}\right)\left(\frac{1}{4}+y_{s}^{2}\right)\left(\frac{1}{4}+y_{t}^{2}\right)} = \frac{1}{3} \sum_{r=1}^{\infty} \left(\frac{1}{\frac{1}{4}+y_{r}^{2}}\right)^{3} + \frac{A_{1}^{3}}{3} - A_{1}\left(A_{2}+A_{1}\right)$$

$$(1.3_{3})$$

Applying (3.4) to (1.3_4) ,

$$\begin{split} \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right) \left(1/4 + y_u^2\right)} \\ &= \frac{1}{8} \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2}\right)^4 - \frac{1}{4} \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^4 + \frac{1}{8} \left(\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^2\right)^2 \right)^2 \\ &- \frac{1}{2} \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2}\right)^2 \left(\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right)}\right) \\ &+ \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2}\right) \left(\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right)}\right) \end{split}$$

Substituting $(1.3_1) \sim (1.3_3)$ for the right side,

$$\begin{split} \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right) \left(1/4 + y_u^2\right)} \\ &= -\frac{1}{4} \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^4 + \frac{1}{8} \left(\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^2\right)^2 \\ &+ \frac{A_1^4}{8} - \left(\frac{1}{2}A_1 - 2\right) A_1 \left(A_1 + A_2\right) + A_1 A_3 \end{split}$$

Here,

$$\sum_{r=0}^{\infty} \left(\frac{1}{1/4 + y_r^2} \right)^2 = \left(\sum_{r=1}^{\infty} \frac{1}{1/4 + y_r^2} \right)^2 - 2 \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{\left(1/4 + y_r^2 \right) \left(1/4 + y_s^2 \right)} = A_1^2 - 2 \left(A_2 + A_1 \right)$$

Using this,

$$\begin{split} \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{\left(1/4 + y_r^2\right) \left(1/4 + y_s^2\right) \left(1/4 + y_t^2\right) \left(1/4 + y_u^2\right)} \\ &= -\frac{1}{4} \sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^4 + \frac{A_1^4}{4} - A_1^3 + A_1^2 \left(\frac{5}{2} - A_2\right) \\ &+ \frac{A_2^2}{2} + A_1 \left(3A_2 + A_3\right) \end{split}$$
(1.34)

If $(1.3_2') \sim (1.3_4')$ are used to calculate the left sides of $(1.3_2) \sim (1.3_4)$, it is as follows.

 f_2 is calculated in 500 terms and is matched up to the 9th decimal place, f_3 is calculated in 30 terms and is matched up to the 11th decimal place, and f_4 is calculated in 20 terms and is matched up to the 14th decimal place. The speed of these convergence are much faster than the direct calculations above.

 $\mathbf{y}_{r} := \text{Im}[\text{ZetaZero}[r]]$

$$\mathbf{f}_{2}[m_{1}] := -\frac{1}{2} \sum_{r=1}^{m} \left(\frac{1}{1/4 + \mathbf{y}_{r}^{2}}\right)^{2} + \frac{\mathbf{A}_{1}^{2}}{2}$$

$$N[f_{2}[500], 7] \qquad N[A_{2} + A_{1}, 7]$$

$$0.0002481558 \qquad 0.0002481556$$

$$f_{3}[m_{L}] := \frac{1}{3} \sum_{r=1}^{m} \left(\frac{1}{1/4 + y_{r}^{2}}\right)^{3} + \frac{A_{1}^{3}}{3} - A_{1}(A_{1} + A_{2})$$

$$N[f_{3}[30], 7] \qquad N[-A_{3} - 2(A_{2} + A_{1}), 7]$$

$$1.672711 \times 10^{-6} \qquad 1.672714 \times 10^{-6}$$

$$f_{4}[m_{L}] := -\frac{1}{4} \sum_{r=1}^{m} \left(\frac{1}{1/4 + y_{r}^{2}}\right)^{4} + \frac{A_{1}^{4}}{4} - A_{1}^{3} + A_{1}^{2}\left(\frac{5}{2} - A_{2}\right) + \frac{A_{2}^{2}}{2} + A_{1}(3A_{2} + A_{3})$$

$$N[f_{4}[20], 7] \qquad N[A_{4} + 3A_{3} + 5(A_{2} + A_{1}), 7]$$

$$8.021074 \times 10^{-9} \qquad 8.021073 \times 10^{-9}$$

The above indirect calculation also can be represented as follows.

Proposition 10.1.3'

When $z_k = 1/2 \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$) are the non-trivial zeros of Riemann zeta $\zeta(z)$ and A_r $r = 1, 2, 3, \cdots$ are constants given by Theorem 10.1.1, the following expressions hold.

$$\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^2 = A_1^2 - 2(A_1 + A_2) = 0.00003710063\cdots$$

$$\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^3 = -A_1^3 + 3(A_1 - 2)(A_1 + A_2) - 3A_3 = 0.00000014367786\cdots$$

$$\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2}\right)^4 = A_1^4 - 4A_1^3 + 4A_1^2\left(\frac{5}{2} - A_2\right) + 4A_1(3A_2 + A_3 - 5)$$

$$+ 2A_1^2 - 20A_2 - 12A_3 - 4A_4 = 6.59827915 \times 10^{-10}$$

cf.

Proposition 4.4.1 in "04 Sum of series equivalent to the Riemann hypothesis " (Infinite-degree Equation) was

$$\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2} \right)^2 = \gamma_0^2 + 2\gamma_0 + 2\gamma_1 - \log \pi + \psi_0 \left(\frac{3}{2} \right) - \frac{1}{4} \psi_1 \left(\frac{3}{2} \right)$$
$$\sum_{r=1}^{\infty} \left(\frac{1}{1/4 + y_r^2} \right)^3 = \gamma_0^3 + 3\gamma_0^2 + 6\gamma_0 + 6\gamma_1 + 3\gamma_0\gamma_1 + \frac{3}{2}\gamma_2 - 3\log \pi$$
$$+ 3\psi_0 \left(\frac{3}{2} \right) - \frac{3}{4} \psi_1 \left(\frac{3}{2} \right) + \frac{1}{16} \psi_2 \left(\frac{3}{2} \right)$$

These are what $A_1 \sim A_3\,$ are expanded.

The calculation results with the formula manipulation software *Mathematica* are as follows.

$$y_{r_{-}} := Im[ZetaZero[r]]$$

$$N\Big[\Big\{\sum_{r=1}^{2000} \Big(\frac{1}{1/4 + y_{r}^{2}}\Big)^{2}, A_{1}^{2} - 2(A_{1} + A_{2})\Big\}, 7\Big]$$

$$\{0.00003710062, 0.00003710064\}$$

$$N\Big[\Big\{\sum_{r=1}^{100} \Big(\frac{1}{1/4 + y_{r}^{2}}\Big)^{3}, -A_{1}^{3} + 3(A_{1} - 2)(A_{1} + A_{2}) - 3A_{3}\Big\}, 7\Big]$$

$$\{1.436777 \times 10^{-7}, 1.436779 \times 10^{-7}\}$$

$$f4 := A_{1}^{4} - 4A_{1}^{3} + 4A_{1}^{2} \Big(\frac{5}{2} - A_{2}\Big) + 4A_{1}(3A_{2} + A_{3} - 5) + 2A_{2}^{2} - 20A_{2} - 12A_{3} - 4A_{4}$$

$$N\Big[\Big\{\sum_{r=1}^{25} \Big(\frac{1}{1/4 + y_{r}^{2}}\Big)^{4}, f4\Big\}, 7\Big]$$

$$\{6.598267 \times 10^{-10}, 6.598279 \times 10^{-10}\}^{1}$$

As far as the above calculation results are concerned, the Riemann hypothesis seems to be true.

10.2 Zeros and Coefficients on $\Xi(z)$

10.2.1 Coefficients of Maclaurin series of $\Xi(z)$

Maclaurin series of the completed Riemann zeta $\Xi(z)$ was obtained by Theorem 9.2.3 in previous chapter. When this is slightly modified and reprinted, it is as follows.

Theorem 10.2.1

Let completed Riemann zeta $\Xi(z)$ and the Maclaurin series are as follows.

- / -

$$\Xi(z) = -\left(\frac{1}{2}+z\right)\left(\frac{1}{2}-z\right)\pi^{-\frac{1}{2}\left(\frac{1}{2}+z\right)}\Gamma\left\{\frac{1}{2}\left(\frac{1}{2}+z\right)\right\}\zeta\left(\frac{1}{2}+z\right) = \Xi(0)\left(1+A_{1}z^{1}+A_{2}z^{2}+A_{3}z^{3}+A_{4}z^{4}+\cdots\right)$$
(2.0)

Then, these coefficients A_r , $r=0, 1, 2, 3, \cdots$ are given by

$$A_{r} = \sum_{s=0}^{r} \sum_{t=0}^{s} (-1)^{r-s} \frac{\log^{r-s} \pi}{2^{r-s} (r-s)!} \frac{g_{s-t}(5/4)}{2^{s-t} (s-t)!} c_{t}$$
(2.a)

Where, $\psi_n(z)$ is the polygamma function, $B_{n,k}(f_1, f_2, ...)$ is Bell polynomials, γ_r is Stieltjes constant,

$$g_{r}\left(\frac{5}{4}\right) = \begin{cases} 1 & r = 0 \\ \sum_{k=1}^{r} B_{r,k}\left(\psi_{0}\left(\frac{5}{4}\right), \psi_{1}\left(\frac{5}{4}\right), \dots, \psi_{r-1}\left(\frac{5}{4}\right)\right) & r = 1, 2, 3, \cdots \end{cases}$$
$$c_{r} = \begin{cases} 1 & r = 0 \\ \frac{2}{\zeta(1/2)} \sum_{s=r}^{\infty} (-1)^{r} \frac{\gamma_{s-1}}{(s-1)!} \binom{s}{r} \left(\frac{1}{2}\right)^{s-r} & r = 1, 2, 3, \cdots \end{cases}$$

The first 4 are as follows.

$$\begin{split} A_0 &= \frac{\log^0 \pi}{2^0 0!} \frac{g_0(5/4)}{2^0 0!} c_0 = 1 \\ A_1 &= -\frac{\log^1 \pi}{2^1 1!} + \frac{g_1(5/4)}{2^1 1!} + c_1 \\ A_2 &= \frac{\log^2 \pi}{2^2 2!} + \frac{g_2(5/4)}{2^2 2!} + c_2 - \frac{\log^1 \pi}{2^1 1!} \frac{g_1(5/4)}{2^1 1!} + \frac{g_1(5/4)}{2^1 1!} c_1 - \frac{\log^1 \pi}{2^1 1!} c_1 \\ A_3 &= -\frac{\log^3 \pi}{2^3 3!} + \frac{g_3(5/4)}{2^3 3!} + c_3 + \frac{\log^2 \pi}{2^2 2!} \frac{g_1(5/4)}{2^1 1!} + \frac{\log^2 \pi}{2^2 2!} c_1 + \frac{g_2(5/4)}{2^2 2!} c_1 \\ &- \frac{\log^1 \pi}{2^1 1!} \frac{g_2(5/4)}{2^2 2!} - \frac{\log^1 \pi}{2^1 1!} c_2 + \frac{g_1(5/4)}{2^1 1!} c_2 - \frac{\log^1 \pi}{2^1 1!} \frac{g_1(5/4)}{2^1 1!} c_1 \end{split}$$

When $A_1 \sim A_8$ are calculated with the formula manipulation software **Mathematica**, it is as follows. **Tbl** ψ [$r_$, $z_$] := **Table**[**PolyGamma**[k, z], {k, 0, r - 1}] $\gamma_{\underline{s}}$:= **StieltjesGamma**[s]

$$g_{L}\left[\frac{5}{4}\right] := If\left[r = 0, 1, \sum_{k=1}^{r} BellY\left[r, k, Tbl\#\left[r, \frac{5}{4}\right]\right]\right]$$

$$c_{L} := If\left[r = 0, 1, \frac{2}{2eta[1/2]} \sum_{s=r}^{1000} (-1)^{r} \frac{Y_{s-1}}{(s-1)!} Binomial[s, r] \left(\frac{1}{2}\right)^{s-r}\right]$$

$$A_{L} := \sum_{s=0}^{r} \sum_{t=0}^{s} (-1)^{r-s} \frac{Log[\pi]^{r-s}}{2^{r-s} (r-s)!} \frac{g_{s-t}[5/4]}{2^{s-t} (s-t)!} c_{t}$$
SetPrecision[{A₂, A₄, A₆, A₈}, 13]
{0.02310499312, 0.000248334054, 1.674353 \times 10^{-6}, 8.0307 \times 10^{-9}}
SetPrecision[{A₁, A₃, A₅, A₇}, 13]
{0. × 10^{-12}, 0. × 10^{-12}, 0. × 10^{-13}, 0. × 10^{-14}}

10.2.2 Vieta's Formulas on $\Xi(z)$

Theorem 10.2.2

Let completed Riemann zeta $\varXi(z)$ and the Maclaurin series are as follows.

$$\Xi(z) = -\left(\frac{1}{2} + z\right) \left(\frac{1}{2} - z\right) \pi^{-\frac{1}{2}\left(\frac{1}{2} + z\right)} \Gamma\left\{\frac{1}{2}\left(\frac{1}{2} + z\right)\right\} \zeta\left(\frac{1}{2} + z\right) \\
= \Xi(0) \left(1 + B_1 z^1 + B_2 z^2 + B_3 z^3 + B_4 z^4 + \cdots\right)$$
(2.0)

Then,

(1) The following expressions hold for non-trivial zeros $z_k = x_k \pm i y_k$, $y_k \neq 0$, $k = 1, 2, 3, \cdots$ of $\zeta(z)$.

$$\begin{split} \Xi(0) &= \prod_{n=1}^{\infty} \frac{\left(x_n - 1/2\right)^2 + y_n^2}{x_n^2 + y_n^2} = -\frac{1}{4\pi^{1/4}} \Gamma\left(\frac{1}{4}\right) \zeta\left(\frac{1}{2}\right) = 0.9942415563 \cdots \\ B_1 &= -\sum_{r_1=1}^{\infty} \frac{2\left(x_{r_1} - 1/2\right)}{\left(x_{r_1} - 1/2\right)^2 + y_{r_1}^2} \\ B_2 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{2^2 \left(x_{r_1} - 1/2\right) \left(x_{r_2} - 1/2\right)}{\left\{\left(x_{r_1} - 1/2\right)^2 + y_{r_1}^2\right\} \left\{\left(x_{r_2} - 1/2\right)^2 + y_{r_2}^2\right\}} + \sum_{r_1=1}^{\infty} \frac{2^0}{\left\{\left(x_{r_1} - 1/2\right)^2 + y_{r_1}^2\right\}} \\ B_3 &= -\sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \frac{2^3 \left(x_{r_1} - 1/2\right) \left(x_{r_2} - 1/2\right) \left(x_{r_3} - 1/2\right)}{\left\{\left(x_{r_1} - 1/2\right)^2 + y_{r_1}^2\right\} \left\{\left(x_{r_2} - 1/2\right)^2 + y_{r_2}^2\right\} \left\{\left(x_{r_3} - 1/2\right)^2 + y_{r_3}^2\right\}} \\ &- \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{2^1 \left\{\left(x_{r_1} - 1/2\right) + \left(x_{r_2} - 1/2\right)^2 + y_{r_2}^2\right\}}{\left\{\left(x_{r_2} - 1/2\right)^2 + y_{r_2}^2\right\}} \\ B_4 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_4=r_3+1}^{\infty} \frac{2^4 \left(x_{r_1} - 1/2\right) \left(x_{r_2} - 1/2\right) \cdots \left(x_{r_4} - 1/2\right)}{\left\{\left(x_{r_4} - 1/2\right)^2 + y_{r_4}^2\right\} \left\{\left(x_{r_2} - 1/2\right)^2 + y_{r_2}^2\right\}} \cdots \left\{\left(x_{r_4} - 1/2\right)^2 + y_{r_4}^2\right\}} \end{split}$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2} \left\{ \left(x_{r_{1}}-1/2\right) \left(x_{r_{2}}-1/2\right)+\cdots+\left(x_{r_{2}}-1/2\right) \left(x_{r_{3}}-1/2\right) \right\}}{\left\{ \left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\} \left\{ \left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\} \left\{ \left(x_{r_{3}}-1/2\right)^{2}+y_{r_{3}}^{2}\right\}} + \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left\{ \left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\} \left\{ \left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}}}{\left\{ \left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\} \left\{ \left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}}}$$

(2) When A_n is a coefficient in **Theorem 10.2.1**, $B_n = A_n$, $n = 1, 2, 3, \cdots$.

Proof

(1) According to Theorem 8.4.1 in "08 Factorization of Completed Riemann Zeta ", when the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_k = x_k \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$), completed zeta (2.0) is factored as follows.

$$\Xi(z) = \Xi(0) \prod_{n=1}^{\infty} \left\{ 1 - \frac{2(x_n - 1/2)z}{(x_n - 1/2)^2 + y_n^2} + \frac{z^2}{(x_n - 1/2)^2 + y_n^2} \right\}$$

Where, $\Xi(0) = \prod_{n=1}^{\infty} \frac{(x_n - 1/2)^2 + y_n^2}{x_n^2 + y_n^2} = -\frac{1}{4\pi^{1/4}} \Gamma\left(\frac{1}{4}\right) \zeta\left(\frac{1}{2}\right) = 0.9942415563 \cdots$

On the other hand, according to Formula 3.5.1 in "03 Vieta's Formulas in Infinite-degree Equation " (Infinite-degree Equation), an infinite product

$$f(z) = \prod_{n=1}^{\infty} \left\{ 1 - \frac{2(x_n - 1/2)z}{(x_n - 1/2)^2 + y_n^2} + \frac{z^2}{(x_n - 1/2)^2 + y_n^2} \right\}$$

is expanded in the Maclaurin series as follows

$$f(z) = 1 + B_1 z^1 + B_2 z^2 + B_3 z^3 + B_4 z^4 + \cdots$$

Where,

$$\begin{split} B_{1} &= -\sum_{r_{1}=1}^{\infty} \frac{2\left(x_{r_{1}}-1/2\right)}{\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}} \\ B_{2} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2}\left(x_{r_{1}}-1/2\right)\left(x_{r_{2}}-1/2\right)}{\left\{\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}} + \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{\left\{\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\}} \\ B_{3} &= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{3}\left(x_{r_{1}}-1/2\right)\left(x_{r_{2}}-1/2\right)\left(x_{r_{3}}-1/2\right)}{\left\{\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}\left\{\left(x_{r_{3}}-1/2\right)^{2}+y_{r_{3}}^{2}\right\}} \\ &-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1}\left\{\left(x_{r_{1}}-1/2\right)+\left(x_{r_{2}}-1/2\right)\right\}}{\left\{\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}} \\ B_{4} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{4}\left(x_{r_{1}}-1/2\right)^{2}+y_{r_{1}}^{2}\right\}\left\{\left(x_{r_{2}}-1/2\right)^{2}+y_{r_{2}}^{2}\right\}\cdots\left\{\left(x_{r_{4}}-1/2\right)^{2}+y_{r_{4}}^{2}\right\}} \end{split}$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2} \{ (x_{r_{1}}-1/2) (x_{r_{2}}-1/2) + \dots + (x_{r_{2}}-1/2) (x_{r_{3}}-1/2) \}}{\{ (x_{r_{1}}-1/2)^{2} + y_{r_{1}}^{2} \} \{ (x_{r_{2}}-1/2)^{2} + y_{r_{2}}^{2} \} \{ (x_{r_{3}}-1/2)^{2} + y_{r_{3}}^{2} \}}$$
$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\{ (x_{r_{1}}-1/2)^{2} + y_{r_{1}}^{2} \} \{ (x_{r_{2}}-1/2)^{2} + y_{r_{2}}^{2} \}}}{\{ (x_{r_{1}}-1/2)^{2} + y_{r_{1}}^{2} \} \{ (x_{r_{2}}-1/2)^{2} + y_{r_{2}}^{2} \}}}$$
$$\vdots$$

Since $\Xi(z) = \Xi(0)f(z)$, (1) holds.

÷

(2) Due to the uniqueness of the power series, it has to be $B_n = A_n$ $n = 1, 2, 3, \dots$.

Q.E.D.

10.2.3 Proposition2 equivalent to the Riemann Hypothesis

If Riemann Hypothesis is true, the following proposition has to hold.

Proposition 10.2.3

When the non-trivial zeros of Riemann zeta $\zeta(z)$ are $z_k = 1/2 \pm i y_k$, $y_k \neq 0$ ($k=1, 2, 3, \cdots$), the following expressions hold.

$$\sum_{r_1=1}^{\infty} \frac{1}{y_{r_1}^2} = A_2 = 0.0231049931\cdots$$
(2.32)

$$\sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{1}{y_{r_1}^2 y_{r_2}^2} = A_4 = 0.0002483340 \cdots$$
(2.34)

$$\sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \frac{1}{y_{r_1}^2 y_{r_2}^2 y_{r_3}^2} = A_6 = 0.00000167435 \cdots$$
(2.36)

$$\sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \sum_{r_4=r_3+1}^{\infty} \frac{1}{y_{r_1}^2 y_{r_2}^2 y_{r_3}^2 y_{r_4}^2} = A_8 = 8.030697 \times 10^{-9}$$
(2.38)

$$\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n}=r_{2n-1}+1}^{\infty} \frac{1}{y_{r_{1}}^{2} y_{r_{2}}^{2} \cdots y_{r_{2n}}^{2}} = A_{2n}$$
$$= \sum_{s=0}^{2n} \sum_{t=0}^{s} (-1)^{2n-s} \frac{\log^{2n-s} \pi}{2^{2n-s} (r-s)!} \frac{g_{s-t}(5/4)}{2^{s-t} (s-t)!} c_{t} \qquad (2.3_{2n})$$

Where, $\psi_n(z)$ is the polygamma function, $B_{n,k}(f_1, f_2, ...)$ is Bell polynomials, γ_r is Stieltjes constant,

$$g_{r}\left(\frac{5}{4}\right) = \begin{cases} 1 & r = 0\\ \sum_{k=1}^{r} B_{r,k}\left(\psi_{0}\left(\frac{5}{4}\right), \psi_{1}\left(\frac{5}{4}\right), \dots, \psi_{r-1}\left(\frac{5}{4}\right)\right) & r = 1, 2, 3, \cdots \end{cases}$$
$$c_{r} = \begin{cases} 1 & r = 0\\ \frac{2}{\zeta(1/2)} \sum_{s=r}^{\infty} (-1)^{r} \frac{\gamma_{s-1}}{(s-1)!} {s \choose r} \left(\frac{1}{2}\right)^{s-r} & r = 1, 2, 3, \cdots \end{cases}$$

Proof of equivalence

If the Riemann hypothesis holds, The real part of the non-trivial zeros $z_k = x_k \pm i y_k$ of $\zeta(z)$ is $x_k = 1/2$ $(k=1,2,3,\cdots)$. Substituting this for each expressions in Theorem 10.2.2 and replacing B_r with A_r , we obtain the desired expressions. According to Theorem 8.2.4 (**"08 Factorization of Completed Riemann Zeta ")**, (2.3₂) is equivalent to Riemann Hypothesis. Since $(2.3_4) \sim (2.3_{2n})$ contain (2.3_2) in some way, they must also be equivalent to Riemann Hypothesis respectively.

Direct Calculation

y_r := Im[ZetaZero[r]]

Both sides of (2.3_2) , (2.3_4) and (2.3_6) are calculated with formula manipulation software **Mathematica**, it is as follows, B_2 is calculated in 100,000 terms and is matched up to the 3th decimal place, B_4 is calculated in each 3,000 terms and is matched up to the 5th decimal place, B_6 is calculated in each 300 terms and is matched up to the 6th decimal place

$$B_{2}[m_{-}] := \sum_{r=1}^{m} \frac{1}{y_{r}^{2}} \qquad N[B_{2}[100\,000]] \qquad N[A_{2}] \\ 0.0230829 \qquad 0.023105 \\ B_{4}[m_{-}] := \sum_{r=1}^{m} \sum_{s=r+1}^{m} \frac{1}{y_{r}^{2} y_{s}^{2}} \qquad N[B_{4}[3000]] \qquad N[A_{4}] \\ 0.000240759 \qquad 0.000248334 \\ B_{6}[m_{-}] := \sum_{r=1}^{m} \sum_{s=r+1}^{m} \frac{1}{y_{r}^{2} y_{s}^{2} y_{t}^{2}} \qquad N[B_{6}[300]] \qquad N[A_{6}] \\ 1.30603 \times 10^{-6} \qquad 1.67435 \times 10^{-6} \\ \end{array}$$

Indirect Calculation

Here, (2.3₂) is not calculated and $B_2 = A_2 = 0.02310499311 \cdots$ is assumed. And using this, the left side of (2.3₄) ~ (2.3₈) are calculated indirectly.

According to Formula 1.3.1 in "01 Power of Infinite Series " (Infinite-degree Equation) ,

$$\left(\sum_{r=0}^{\infty} a_r\right)^2 = \sum_{r=0}^{\infty} a_r^2 + 2\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_r a_s$$
(3.2)

$$\left(\sum_{r=0}^{\infty} a_r\right)^3 = \sum_{r=0}^{\infty} a_r^3 + 3\sum_{r=0}^{\infty} a_r \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_r a_s - 3\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_r a_s a_t$$
(3.3)

$$\left(\sum_{r=0}^{\infty} a_r\right)^4 = 2\sum_{r=0}^{\infty} a_r^4 - \left(\sum_{r=0}^{\infty} a_r^2\right)^2 + 4\left(\sum_{r=0}^{\infty} a_r\right)^2 \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} a_r a_s - 8\sum_{r=0}^{\infty} a_r \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} a_r a_s a_t + 8\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} a_r a_s a_t a_u$$
(3.4)

Replacing r=0 with r=1 and a_r with $1/y_r^2$,

$$\left(\sum_{r=0}^{\infty} \frac{1}{y_r^2}\right)^2 = \sum_{r=0}^{\infty} \left(\frac{1}{y_r^2}\right)^2 + 2\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_r^2 y_s^2}$$

$$\left(\sum_{r=0}^{\infty} \frac{1}{y_r^2}\right)^3 = \sum_{r=0}^{\infty} \left(\frac{1}{y_r^2}\right)^3 + 3\sum_{r=0}^{\infty} \frac{1}{y_r^2} \cdot \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_r^2 y_s^2} - 3\sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2}$$

$$\left(\sum_{r=1}^{\infty} \frac{1}{y_r^2}\right)^4 = 2\sum_{r=1}^{\infty} \left(\frac{1}{y_r^2}\right)^4 - \left\{\sum_{r=1}^{\infty} \left(\frac{1}{y_r^2}\right)^2\right\}^2 + 4\left(\sum_{r=1}^{\infty} \frac{1}{y_r^2}\right)^2 \cdot \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2}$$

$$- 8\sum_{r=1}^{\infty} \frac{1}{y_r^2} \cdot \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2} + 8\sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2 y_u^2}$$

Substituting $(2.3_2) \sim (2.3_8)$ for these,

$$A_2^2 = \sum_{r=0}^{\infty} \frac{1}{y_r^4} + 2A_4 \tag{w4}$$

$$A_{2}^{3} = \sum_{r=0}^{\infty} \frac{1}{y_{r}^{6}} + 3A_{2}A_{4} - 3A_{6}$$
(w6)
$$A_{2}^{4} = 2\sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}} - \left(\sum_{r=1}^{\infty} \frac{1}{y_{r}^{4}}\right)^{2} + 4A_{2}^{2}A_{4} - 8A_{2}A_{6} + 8A_{8}$$

$$= 2 \sum_{r=1}^{\infty} \frac{1}{y_r^8} - (A_2^2 - 2A_4)^2 + 4A_2^2A_4 - 8A_2A_6 + 8A_8$$

i.e.

$$A_2^4 = \sum_{r=1}^{\infty} \frac{1}{y_r^8} - 2A_4^2 + 4A_2^2A_4 - 4A_2A_6 + 4A_8$$
(w8)

From (w4), (w6), (w8),

$$A_{4} = -\frac{1}{2} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{4}} + \frac{1}{2} A_{2}^{2} , \quad A_{6} = -\frac{1}{3} \sum_{r=0}^{\infty} \frac{1}{y_{r}^{6}} - \frac{1}{3} A_{2}^{3} + A_{2} A_{4}$$
$$A_{8} = -\frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{y_{r}^{8}} + \frac{1}{4} A_{2}^{4} + \frac{1}{2} A_{4}^{2} - A_{2}^{2} A_{4} + A_{2} A_{6}$$

Since $A_n = B_n$ $n = 1, 2, 3, \cdots$,

$$B_4 = -\frac{1}{2} \sum_{r=0}^{\infty} \frac{1}{y_r^4} + \frac{1}{2} A_2^2$$
(2.34)

$$B_6 = \frac{1}{3} \sum_{r=0}^{\infty} \frac{1}{y_r^6} - \frac{1}{3} A_2^3 + A_2 A_4$$
(2.36')

$$B_8 = -\frac{1}{4} \sum_{r=1}^{\infty} \frac{1}{y_r^8} + \frac{1}{4} A_2^4 + \frac{1}{2} A_4^2 - A_2^2 A_4 + A_2 A_6$$
(2.38')

We should just calculate (2.3₄'), (2.3₆') and (2.3₈') instead of

$$B_4 = \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \frac{1}{y_r^2 y_s^2} , \quad B_6 = \sum_{r=0}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2} , \quad B_8 = \sum_{r=1}^{\infty} \sum_{s=r+1}^{\infty} \sum_{t=s+1}^{\infty} \sum_{u=t+1}^{\infty} \frac{1}{y_r^2 y_s^2 y_t^2 y_u^2}$$

The calculation results with the formula manipulation software *Mathematica* are as follows.

 B_4 is calculated in 500 terms and is matched up to the 9th decimal place, B_6 is calculated in 30 terms and is matched up to the 11th decimal place, and B_8 is calculated in 20 terms and is matched up to the 13th decimal place. The speed of these convergence are much faster than the direct calculations above.

$$B_{4}[m_{-}] := -\frac{1}{2} \sum_{r=1}^{m} \frac{1}{y_{r}^{4}} + \frac{A_{2}^{2}}{2} \qquad N[B_{4}[500]] \qquad N[A_{4}] \\ 0.000248334 \qquad 0.000248334 \\ B_{6}[m_{-}] := \frac{1}{3} \sum_{r=1}^{m} \frac{1}{y_{r}^{6}} + A_{2}A_{4} - \frac{A_{2}^{3}}{3} \qquad N[B_{6}[30]] \qquad N[A_{6}] \\ 1.67435 \times 10^{-6} \qquad 1.67435 \times 10^{-6} \\ B_{8}[m_{-}] := -\frac{1}{4} \sum_{r=1}^{m} \frac{1}{y_{r}^{8}} + \frac{A_{2}^{4}}{4} + \frac{A_{4}^{2}}{2} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{2}^{2}A_{4} + A_{2}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{2}^{2}A_{4} + A_{2}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{2}^{2}A_{4} + A_{2}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[20]] \qquad N[A_{8}] \\ = A_{3}^{2}A_{4} + A_{3}A_{6} \qquad N[B_{8}[A_{8}] + A_{$$

(w4), (w6) and (w8) also can be represented as follows.

Proposition 10.2.3'

When $z_k = 1/2 \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$) are the non-trivial zeros of Riemann zeta $\zeta(z)$ and A_r , $r = 1, 2, 3, \cdots$ are constants given by Theorem 10.2.1, the following expressions hold.

$$\sum_{r=1}^{\infty} \frac{1}{y_r^4} = A_2^2 - 2A_4 = 0.00003717259\cdots$$

$$\sum_{r=1}^{\infty} \frac{1}{y_r^6} = A_2^3 - 3A_2A_4 + 3A_6 = 0.00000014417393\cdots$$

$$\sum_{r=1}^{\infty} \frac{1}{y_r^8} = A_2^4 + 2A_4^2 - 4A_2^2A_4 + 4A_2A_6 - 4A_8 = 6.6303 \times 10^{-10}$$

The calculation results with the formula manipulation software *Mathematica* are as follows. Higher precision is required for calculation of the right side.

$$N\left[\left\{\sum_{r=1}^{2000} \frac{1}{y_{r}^{4}}, A_{2}^{2} - 2A_{4}\right\}, 7\right] \\ \{0.00003717258, 0.0000371726\} \\ N\left[\left\{\sum_{r=1}^{100} \frac{1}{y_{r}^{6}}, A_{2}^{3} - 3A_{2}A_{4} + 3A_{6}\right\}, 7\right] \\ \{1.441738 \times 10^{-7}, 1.44174 \times 10^{-7}\}$$

 $\mathbf{y}_{r_{-}} := \operatorname{Im}[\operatorname{ZetaZero}[r]]$

$$N\left[\left\{\sum_{r=1}^{25} \frac{1}{y_r^8}, A_2^4 + 2A_4^2 - 4A_2^2A_4 + 4A_2A_6 - 4A_8\right\}, 10\right] \\ \left\{6.63030429 \times 10^{-10}, 6.63032 \times 10^{-10}\right\}$$

As far as the above calculation results are concerned, the Riemann hypothesis seems to be true.

2018.09.122018.09.19 Added the 4th power and the 8th power.

Kano Kono

Alien's Mathematics