
11 Zeros of Dirichlet Eta and System of Transcendental Equations

Abstract

(1) The problem of the zeros of Dirichlet eta function is reduced to overdetermined system of Transcendental 

    equations, by functional equations.

(2) On the critical line,  this system of transcendental equations has a solution.

(3) Except on the critical line, this system of transcendental equations is unlikely to have a solution.

11.1 Series of  1/2 z

  In this section, we first prepare the following two formulas.

Formula 11.1.1

  When the Dirichlet Eta function is z     z = x +i y  and  1/2+z  = u+ z + i v+ z ,

the following expressions hold for x > -1/2 .

+( )z :=   2
1

+z  = Σ
s=1



s

( )-1 s-1

e-z log s
(1.1+)

u+( )x,y  =  Σ
s=1



s

( )-1 s-1

e-x log s cos( )ylog s

v+( )x,y  =  -Σ
s=1



s

( )-1 s-1

e-x log s sin( )ylog s

Proof

( )z  = Σ
s=1


( )-1 s-1 e-z log s

Replacing z  with 1/2+z ,

 2
1

+z  = Σ
s=1


( )-1 s-1 e

- 2

1
+ z log s

 = Σ
s=1



s

( )-1 s-1 

e-z log s

Let z = x + i y .  Then

+( )x,y  = Σ
s=1



s

( )-1 s-1 

e-x log s e-i y log s

=  Σ
s=1



s

( )-1 s-1 

e-x logs  cos( )ylog s  - i sin( )ylog s

From this, we obtain u+ , v+ .

Note

  x = -1/2  is the line of convergence of this Dirichlet series.
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Formula 11.1.2

  When the Dirichlet Eta function is z     z = x +i y  and  1/2-z  = u- z + i v- z ,

the following expressions hold for x < 1/2 .

-( )z :=   2
1

-z  = Σ
s=1



s

( )-1 s-1

ez log s (1.1-)

u-( )x,y  = Σ
s=1



s

( )-1 s-1

ex log s cos( )ylog s

v-( )x,y  = Σ
s=1



s

( )-1 s-1

ex log s sin( )ylog s

Proof

( )z  = Σ
s=1


( )-1 s-1 e-z log s

Replacing z  with 1/2-z ,

 2
1

-z  = Σ
s=1


( )-1 s-1e

- 2

1
- z log s

 = Σ
s=1



s

( )-1 s-1

ez log s

Let z = x + i y .  Then

-( )x,y  = Σ
s=1



s

( )-1 s-1

ex log s e i y log s

 =  Σ
s=1



s

( )-1 s-1

ex log s cos( )ylog s  + i sin( )ylog s

From this, we obtain u- , v- .

Note

  x = 1/2  is the line of convergence of this Dirichlet series.

- 2 -



11.2 Hyperbolic Function Series

  In the previous section, the following two formulas were obtained .

-( )z :=   2
1

-z  = Σ
s=1



s

( )-1 s-1

ez log s (1.1-)

+( )z :=   2
1

+z  = Σ
s=1



s

( )-1 s-1

e-z log s
(1.1+)

  In this section, these are rearranged into two hyperbolic function series.  And, this is further expanded into

series by real part and imaginary part.

Formula 11.2.1 ( cosh function series )

  When the set of real numbers is R  and z = x +i y   x ,y  R ,  the following formulas hold on the whole

complex plane.

c( )z  = Σ
s=1



s

( )-1 s-1

cosh( )zlog s   = uc + i vc 

uc( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s cos( )ylog s

vc( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s sin( )ylog s

Proof

  From (1.1-) , (1.1+) ,

2
1
  2

1
-z + 2

1
+z  = Σ

s=1



s

( )-1 s-1

2
ez log s + e-z log s

= Σ
s=1



s

( )-1 s-1

cosh( )zlog s  =: c( )z

Here,

cosh( )x+iy  = cosh x cos y + i sinh x sin y
So, replacing x with x log s  and y with y log s  respectively,

cosh( )zlog s  =  cosh( )xlog s cos( )ylog s + i sinh( )xlog s sin( )ylog s

Substituting this for c z ,  we obtain uc , vc .

  c z  which consists of the sum of Dirichlet series is no longer a Dirichlet series.  And the convergence

area is [- , 1/2)  (-1/2 , ] = [- , ] .  That is, the whole complex plane.

  Since the convergence speed of c z  is slow, a decent figure can not be drawn. So, applying the Euler

transformation to this,

c( )z  = Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

cosh( )zlog s   = uc + i vc 
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  Using this acceleration formula, c z  is drawn as follows.  In addition,   1/2-z + 1/2+z /2  

is also drawn together, but both are exactly overlapped and the latter (orange) cannot be seen.

Formula 11.2.2 ( sinh function series )

  When the set of real numbers is R  and z = x +i y   x ,y  R ,  the following formulas hold on the whole

complex plane.

s( )z  = Σ
s=1



s

( )-1 s-1

sinh( )zlog s   = us + i vs 

us( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s cos( )ylog s

vs( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s sin( )ylog s

Proof

  From (1.1-) , (1.1+) ,

2
1
  2

1
-z - 2

1
+z  = Σ

s=1



s

( )-1 s-1

2
ez log s - e-z log s

= Σ
s=1



s

( )-1 s-1

sinh{ }z log s  =: s( )z

Here,

sinh( )x+iy  = sinh x cos y + i cosh x sin y
So, replacing x with x log s  and y with y log s  respectively,

sinh( )zlog s  =  sinh( )xlog s cos( )ylog s + i cosh( )xlog s sin( )ylog s

Substituting this for s z ,  we obtain us , vs .

  s z  which consists of the difference between Dirichlet series, is no longer a Dirichlet series.  And the

convergence area is [- , 1/2)  (-1/2 , ] = [- , ] .  That is, the whole complex plane.

- 4 -



  Since the convergence speed of s z  is slow, a decent figure can not be drawn. So, applying the Euler

transformation to this,

s( )z  = Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

sinh( )zlog s   = us + i vs 

  Using this acceleration formula, s z  is drawn as follows.  In addition,   1/2-z - 1/2+z /2  

is also drawn together, but both are exactly overlapped and the latter (orange) cannot be seen.
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11.3 Necessary and Sufficient Condition for Zeros

Theorem 11.3.1

  When the set of real numbers is R  and Dirichlet eta functions is  z    z = x +i y ,  x ,y  R ,

 1/2  z  = 0    -1/2 < x < 1/2  if and only if  the following system of equations has a solution.

uc( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s  cos( )ylog s  = 0 

vc( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s  sin( )ylog s   = 0

us( )x,y  =  Σ
s=1



s

( )-1 s-1 

sinh( )xlog s  cos( )ylog s  = 0

vs( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s  sin( )ylog s  = 0

Proof

(1) Necessity

  The following functional equation holds for the Dirichlet Eta function  z .

 2
z


-

2

z

 1-2z  z  =  2
1-z


-

2

1-z

 1-21-z  1-z 0 < Re z  < 1

Gamma function and powers of   have no zeros,  and 1-2z , 1-21-z  have no zeros in 0 < Re z  < 1

Therefore, at the zero of  z ,

 z  =  1-z  = 0 0 < Re z  < 1

Replacing z  with 1/2+z ,

 2
1

+z  =  2
1

-z  = 0 -
2
1

< Re z  <
2
1

From  Formula 11.1.1 and  Formula 11.1.2 , 


 2

1
-z  = Σ

s=1



s

( )-1 s-1

ez log s = 0 (3.1-)

 2
1

+z  = Σ
s=1



s

( )-1 s-1

e-z log s = 0 (3.1+)

Further, by  Formula 11.2.1 and  Formula 11.2.2 ,  these are rearranged as follows.

 2
1
  2

1
-z + 2

1
+z  = Σ

s=1



s

( )-1 s-1

cosh( )zlog s  = 0 (3.1c )

2
1
  2

1
-z - 2

1
+z  = Σ

s=1



s

( )-1 s-1

sinh( )zlog s  = 0 (3.1s )

Putting z = x +i y  and denoting these by real and imaginary parts,  we obtain the desired expression.
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(2) Sufficiency

  By adding and subtracting  (3.1c) and (3.1s) ,


 2

1
-z  = Σ

s=1



s

( )-1 s-1

 cosh( )zlog s + sinh( )zlog s  = 0

 2
1

+z  = Σ
s=1



s

( )-1 s-1

 cosh( )zlog s - sinh( )zlog s  = 0

Substituting cosh z =  e z + e -z /2 , sinh z =  e z - e -z /2  for these,


 2

1
-z  = Σ

s=1



s

( )-1 s-1

ez  log s = 0 

 2
1

+z  = Σ
s=1



s

( )-1 s-1

e-z  log s = 0

Q.E.D.

Convergence Acceleration by Euler Transformation

  Hereafter, the formulas of Theorem 11.3.1 are drawn. However, since these series are slow to converge, they

can not be drawn cleanly, especially when y is small.  So, hereafter, for y  100 , we use the original formula

of the theorem as it is, and for y < 100 , we use the following acceleration formulas by Euler transformation.

uc( )x,y  =  Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

cosh( )xlog s  cos( )ylog s

vc( )x,y  =  Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

sinh( )xlog s  sin( )ylog s

us( )x,y  =  Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

sinh( )xlog s  cos( )ylog s

vs( )x,y  =  Σ
k=1



Σ
s=1

k

2k+1

1
 

k
s s

( )-1 s-1

cosh( )xlog s  sin( )ylog s

  As a sample,  drawing vc , us  at x =0.25  with the original formula and the accelerated formula, it is as

follows. The left figure is the original formula and the right figure is the accelerated formula. The acceleration

effect is obvious where y  is small.
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Overdetermined System
  Since there are four equations for two variables in  Theorem 11.3.1 ,  this system of equations is an over-

determined system. Such a system of equations generally has no solution.

Zeros on the Critical Line 

  However, such a system of equations may exceptionally has solution. That is the case when x =0 .  Note

that x =0  is the critical line of function  1/2+z .  Substituting x =0  for the above,


uc( )0,y  =  Σ

s=1



s

( )-1 s-1

cos( )ylog s    = 0

vc( )0,y  =  1  0   = 0

us( )0,y  =  1  0   = 0

vs( )0,y  =  Σ
s=1



s

( )-1 s-1

sin( )ylog s    = 0

vc , us  are each become 0  and the property of overdetermination disappears.  And uc 0,y  , vs 0,y

result in u+ 0,y , v+ 0,y  in Formula 11.1.1, respectively.  So, this system of equations has a solution.

  When x =0 ,  uc  vs  are drawn as follows.  Blue is uc  and magenta is vs .The point ( red ) where these

intersect on the y -axis is the zero point of  1/2z .  Orange is vc  and light blue is us .  They overlap

on the y -axis.  Of course, these two straight lines also pass through the red points.

Outside the Critical Line

  If x  deviates even slightly from 0 ,  vc , us  cease to be straight lines.  For example, when x =0.000001 ,
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  As the result,  the property of overdetermination is restored.  For example, when x =0.25 , uc  vs  are

drawn as follows.  It seems unlikely that the four curves would intersect at one point on the y -axis.

  Therefore, we can present the following hypothesis, which is equivalent to the Riemann hypothesis.

Hypothesis 11.3.2

  When y  is a real number and x  is a real number s.t. -1/2 < x < 1/2 .  the following system of 

equations has no solution such that x  0 .

uc( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s  cos( )ylog s  = 0 

vc( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s  sin( )ylog s  = 0

us( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s  cos( )ylog s  = 0

vs( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s  sin( )ylog s  = 0
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11.4 Necessary Condition for Zeros

 The system of equations in  Hypothesis11.3.2  is equivalent to the following six sets of system of equations.

Each system of equations is necessary condition for zeros.


uc = 0

vc = 0
   ,   

uc = 0

us = 0
,   

uc = 0

vs = 0
  ,   

vc = 0

us = 0
   ,   

vc = 0

vs = 0
   ,   

us = 0

vs = 0
  In order to prove Hypothesis11.3.2, it is sufficient to show that any one of these pairs does not have a solution

such as x 0 . 

vc x,y  and us( )x,y
  The most interesting of these is the following pair.


vc( )x,y  =  Σ

s=1



s

( )-1 s-1

sinh{ }x log s  sin{ }y log s  = 0

us( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh{ }x log s  cos{ }y log s  = 0

These 3D views are as follows.

  These functions have the following properties.

(1) Amplitude increase and period densification

  At x =0 , both vc  and us  are horizontal lines with a height of 0 , but at x =0.000001  it becoms the left

figure,  and at x =0.499999  it becoms the right figure. .
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Both figures look like the same waveform,  but if the aspect ratio is set to 1 , vc , us  in the left figure almost 

overlap with the y axis. The periods of vc , us around here ( y =1026 ) are about 43 . Here, the period is

assumed to be the y coordinate distance from one downhill inflection point to the next downhill inflection point.

  On the other hand, The 2D figures around y =100000  are as follows. The left figure is at x =0.000001

and the right figure is at x =0.499999 .

 

We can be see that the amplitudes are larger than in the previous two figures. The periods of vc , us  around

here ( y =99997100002 ) are about 0.80.6 , which is considerably shorter than the previous two figures.

  From the above four figures, it is understood that the amplitude increases and the frequency becomes dense

as y . These suggest that the possibility that vc  and us  intersect on the y -axis is extremely low.

(2) Relationships like cosine and sine

  In any figure of  (1) , the peaks and valleys of vc  are close to the zeros of us ,  and the peaks and valleys of

us  are close to the zeros of vc .  In fact,  the partial derivatives of vc , us  with respect to y  are

vcy( )x,y  =  Σ
s=1


( )-1 s-1

s

log s
sinh{ }x log s  cos{ }y log s

usy( )x,y  =  -Σ
s=1


( )-1 s-1

s

log s
sinh{ }x log s  sin{ }y log s

When x = 0.25 , y = 99997100002 , the left figure shows vc  and -usy /7 ,  and the right figure shows

us  and vcy /7 .  The divisions of the derivative by 7  are for amplitude scaling.

 

The zeros of vc  and -usy /7  are almost the same in the left figure,  and the zeros of us  and vcy /7  are 

almost the same in the right figure. These show that the relationship between vc  and us  closely resembles

the relationship between cosine and sine. Hence, vc  and us  are unlikely to intersect on the y -axis.
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(3) Vicinity of Lehmer phenomenon

  For example, when x =1/2 , the real and imaginary parts of   for y =70037007  are drawn in the left

figure.  Around y =7005 , both the real and imaginary parts seem to intersect at one point on the y -axis.

 

However, when the area around y =7005  is enlarged,  it becomes the right figure. The real and imaginary

parts intersect at two points on the y -axis.  This is known as the Lehmer phenomenon.

  When x =0.000001 , vc and us  for y =70037007  are drawn in the left. vc and us  seem to intersect

at one point on the y -axis near y =7005 .

 

However, even in this case, when the area around y =7005  is enlarged,  it becomes the right figure. We can

see that vc and us  have no intersection on the y -axis,  And the zero of vc and the maximum of us  are very

close. That is,  in the vicinity of the Lehmer phenomenon, the property of  (1)  is lost, but the property of  (2)  is

kept.  In Addition, as x  1/2 , the amplitude increases  and the Lehmer phenomenon disappears.

Hypothesis equivalent to the Riemann hypothesis

  As seen above, the system of equations consisting of vc x ,y  and us x ,y  has interesting and well-

behaved properties. So, I present the following hypothesis, which is equivalent to the Riemann hypothesis.

Hypothesis 11.4.1

  When y  is a real number and x  is a real number s.t. -1/2 < x < 1/2 .  the following system of 

equations has no solution such that x  0 .


vc( )x,y  =  Σ

s=1



s

( )-1 s-1 

sinh( )xlog s  sin( )ylog s  = 0

us( )x,y  =  Σ
s=1



s

( )-1 s-1

sinh( )xlog s  cos( )ylog s  = 0
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c.f.

Focusing on the x -axis, the following pair might also be promising.


vc( )x,y  =  Σ

s=1



s

( )-1 s-1

sinh{ }x log s  sin{ }y log s  = 0

vs( )x,y  =  Σ
s=1



s

( )-1 s-1

cosh( )xlog s  sin( )ylog s   = 0
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