
12 Zeros of Riemann Zeta and System of Infinite Degree Equations

Abstract

(1) The problem of the zeros of Riemann zeta function is reduced to overdetermined system of infinite degree

     equations, by functional equations.

(2) On the critical line,  this system of infinite degree equations has a solution.

(3) Except on the critical line, this system of infinite degree equations is unlikely to have a solution.

12.1 Laurent Series of  z and  1-z

  According to Formula 9.3.1 in " 09 Power Series of Riemann Zeta etc by Real & Imaginary Parts " ( Dirichler

Series ) ,  Laurent series of Riemann Zeta  z  is as follows.

Formula 12.1.1  ( Formula 9.3.1 Reprint )

  When the Riemann zeta function is ( )z     z = x +i y  and Stieltjes constansts are s   s =0,1,2, ,

the following expressions hold on the whole complex plane except z =1 .
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
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Where, 00 = 1

  This immediately gives the following formula.

Formula 12.1.2

  When Riemann zeta function is ( )1-z     z = x +i y  and Stieltjes constansts are s   s =0,1,2, ,

the following expressions hold on the whole complex plane except z =0 .
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Where, 00 = 1

  Replacing z  with 1/2+z  in the above two formulas, we obtain the following formulas.
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Formula 12.1.3

  When the Riemann zeta function is  1/2+z     z = x +i y  and  Stieltjes constansts are

s   s =0,1,2, ,  the following expressions hold on the whole complex plane except z =1/2 .

 2
1

+z  = -
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
s s!
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
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
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Where, 00 = 1

Formula 12.1.4

  When the Riemann zeta function is  1/2-z     z = x +i y  and  Stieltjes constansts are

s   s =0,1,2, ,  the following expressions hold on the whole complex plane except z =-1/2 .

 2
1
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1/2+z
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s=0


s s!

( )1/2+z s
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
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Where, 00 = 1
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12.2 Even and Odd Functions

  In this section, we rearrange the Riemann zeta functions  1/2z  obtained in the previous section into 

even and odd functions. And, we further expand these into separate series for real and imaginary parts.

Theorem 12.2.0

  When the Riemann zeta functions are  1/2z  and  Stieltjes constansts are s   s =0,1,2, ,

 1/2z  = 0   if and only if the following system of equations has a solution.


e( )z  = -
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
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     Where, 00 = 1

Proof

  The following two formulas were obtained in the previous section.

 2
1

+z  = -
1/2-z

1
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1
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By functional equation,  z  =  1-z  = 0  on the zeros of  z .

Therfore, on zeros of  1/2+z ,  the following has to hold.

 2
1

+z  =  2
1

-z  = 0

Expressed as series,
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Here,

( )a +b s = Σ
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s

 
s

t
a s-t b t

Using this,

 2
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 = Σ
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s
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s
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1 s-t

z t
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z t

Substituting these for the above, 
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That is,
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Both are correct, but somewhat inefficient.  Therefore, after rearranging these, s and t  are exchanged

as follows.
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applying this for the above,
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e( )z  = -
1/4-z2
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  Conversely,  if e( )z =o( )z =0 ,  it will result in ( )1/2+z =( )1/2-z =0   by tracing

the above inverse. Q.E.D.

  Function e( )z , o( )z  are further expanded into series by real and imaginary parts.

Formula 12.2.1 ( Even function )

e( )z  = -
1/4-z2

1/2
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

 t -s !

t  2
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 , 00 = 1

Proof

  From  Theorem 12.2.0 ,

e( )z  = -
1/4-z2

1/2
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s=0


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
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
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f 2s ( )0 = Σ
t=0


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  According to Formula 14.1.2" in " 14 Taylor Expansion by Real Part & Imaginary Part " ( Alacarte ) ,

f( )z  = Σ
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
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( )2s !
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 = u( )x, y + i v( )x, y
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u( )x,y  = Σ
r=0



Σ
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
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 0
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
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
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( )2r+1 !
( )-1 r y2r+1

Where, 00 = 1
Separating the first term of e z  by real and imaginary parts and applying this formula to the second term,

we obtain the desired expressions.

Formula 12.2.2 ( Odd function )

o( )z  = -
1/4-z2

z
 - Σ

s=0



f 2s+1
 0

( )2s+1 !
z2s+1

uo x ,y  = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2
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 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s +1 !
x 2s+1

 2r !
( )-1 r y 2r

vo x ,y  = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s
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Where,

f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 , 00 = 1

Proof

  By Theorem 12.2.0  & Formula 14.1.2" in " 14 Taylor Expansion by Real Part & Imaginary Part " ( Alacarte ),

it is proved in a similar way to  Formula 12.2.1 .

Note

f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 

In this chapter, {  } is used for drawing. Because the drawing speed is 69  times different in Mathematica .

( cause unknown )
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12.3 Necessary and Sufficient Condition for Zeros

Theorem 12.3.1

  When the Riemann zeta functions are  1/2z  and  Stieltjes constansts are s   s =0,1,2, ,

 1/2z  = 0   if and only if  the following system of equations has a solution. 

   

ue =  -
2  1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 = 0 

ve =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 +Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

 2s +1 !
x 2s+1

 2r +1 !
( )-1 r y 2r+1

 = 0

uo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s +1 !
x 2s+1

 2r !
( )-1 r y 2r

 = 0

vo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r +1 !
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 = 0

Where,

f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 , 00 = 1

Proof

  Representing  Theorem 12.2.0  with Formula 12.2.1 and Formula 12.2.2,  we obtain the desired expressions.

Overdetermined System
  Since there are four equations for two variables, this system of equations is an overdetermined system.

Such a system of equations generally has no solution.

Zeros on the Critical Line 

  However, such a system of equations may exceptionally has solution. That is the case when x =0 .  Note

that x =0  is the critical line of function  1/2+z .  Substituting x =0  for the above,


ue =  -

1/4+ y 2 

1/2
 + Σ

r=0


f( )2r ( )0

 2r !
( )-1 r y 2r

 = 0

ve =  0 + 0 = 0

uo = 0 - 0 = 0

vo =  -
1/4+ y 2 

y
 - Σ

r=0


f( )2r+1 ( )0

 2r +1 !
( )-1 r y 2r+1

 = 0

Where, f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

, 00 = 1

ve , uo  are each become 0  and the property of overdetermination disappears.  Substituting f ( )2r  , f ( )2r+1

for ve , uo  and  calculating,  these result in u+ 0,y , v+ 0,y  in Formula 12.1.3, respectively.  Therefore,

this system of equations has a solution.
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  When x =0 ,  ue  vo  are drawn as follows.  Blue is ue  and  red tea is vo . The point ( red ) where these

intersect on the y -axis is the zero point of  1/2z .  Orange is ve  and light blue is uo .  They overlap

on the y -axis.  Of course, these two straight lines also pass through the red points.

Zeros outside the Critical Line

  If x  deviates even slightly from 0 ,  ve , uo  cease to be straight lines.  For example, when x =-0.0001 ,

  

  As the result,  the property of overdetermination is restored.  For example, when x =-0.25 , ue  vo  are

drawn as follows.  It seems unlikely that the four curves would intersect at one point on the y -axis.

  Therefore, we can present the following hypothesis, which is equivalent to the Riemann hypothesis.
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Hypothesis 12.3.2

  When s   s =0,1,2,  are Stieltjes constansts and x , y are real numbers,  The following system of 

equations has no solution such that x  0 .

   

ue =  -
2  1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 = 0

ve =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 +Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

 2s +1 !
x 2s+1

 2r +1 !
( )-1 r y 2r+1

 = 0

uo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s +1 !
x 2s+1

 2r !
( )-1 r y 2r

 = 0

vo =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1

 = 0

Where, f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t-s !

t  2
1 t-s

 , 00 = 1
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12.4 Necessary Condition for Zeros

 The system of equations in  Hypothesis12.3.2 is equivalent to the following six sets of system of equations.

Each system of equations is necessary condition for zeros.


ue = 0

ve = 0
   ,   

ue = 0

uo = 0
,   

ue = 0

vo = 0
  ,   

ve = 0

uo = 0
   ,   

ve = 0

vo = 0
   ,   

vo = 0

uo = 0

  Where, f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 , 00 = 1

  In order to prove Hypothesis12.3.2, it is sufficient to show that any one of these pairs does not have a solution

such as x 0 .  As a result of considering the partial derivatives of ue  ,ve , uo , vo  with respect to y ,  we

present two system of equations that are almost equivalent to the Riemann hypothesis.

Hypothesis 12.4.1

  When s   s =0,1,2,  are Stieltjes constansts and x , y are real numbers,

the following system of equations has no solution such that x  0 .


vo = -

 1/4-x 2 + y 2 2 
+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1

 = 0

uo = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x 1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s +1 !
x 2s+1

 2r !
( )-1 r y 2r

 = 0

  Where, f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 , 00 = 1

Remark

  The partial derivatives of vo  with respect to y  is

y

vo
 =  

  1/4-x 2 + y 2 2 
+ 4x 2y 2

2

y 1/4+x 2 + y 2  4y 1/4-x 2 + y 2 +8x 2y
-
 1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + 3y 2 

- Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 When x =-0.25 ,  these are drawn as follows.  Red tea is vo , light blue is uo  and purple is vo/y .
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Zeros of vo/y  (purple)  correspond to peaks or bottoms of vo  (red tea) . And we can be seen that the

zeros of uo (light blue)  and the zeros of vo/y  (purple) are quite close.  That is,  vo (red)  and uo ( light

blue)  are unlikely to share zeros .

  To observe this in more detail,  let us consider the following system of equations, which is equivalent to the

above at x 0 .. 


vo = -

 1/4-x 2 + y 2 2 
+ 4x 2y 2

y 1/4+x 2 + y 2

 - Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1

 = 0

x

uo
 = -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 - y 2

 - Σ
r=0



Σ
s=0



2s +1
f( )2r+2s+1( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 = 0

y

vo
 =  

  1/4-x 2 + y 2 2 
+ 4x 2y 2

2

y 1/4+x 2 + y 2  4y 1/4-x 2 + y 2 +8x 2y
-
 1/4-x 2 + y 2 2 

+ 4x 2y 2

1/4-x 2 + 3y 2 

- Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 When x =-0.25 ,  these are drawn as follows.  Red tea is vo , light blue is uo/x  and purple is vo/y .

Zeros of vo/y  (purple)  correspond to peaks or bottoms of vo  (red tea) . And uo/x (light blue) and

vo/y  (purple) overlap, and uo/x (light blue) is almost invisible. Actually, the zeros points of uo/x

(light blue) and vo/y (purple)  and their difference are as follows.  In addition,  zeros near 22  may be 

inaccurate due to the underflow.

vo/x 7.18500 12.3133 16.1699 19.4249 22.0703

vo/y 7.19453 12.3223 16.1755 19.4255 22.0685

difference -0.00953 -0.0090 -0.0056 -0.0006   0.0018

  We do not have to worry about the complexity of the fractional functions of vo , uo/x , v0/y . Because,

they approach 0  as y .  So, if we can prove that the zeros of the following two series are close when

y , then we can say that vo  and uo  do not have common zeros. .

Σ
r=0



Σ
s=0



2s +1

f( )2r+2s+1( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

, Σ
r=0



Σ
s=0


f( )2r+2s+1( )0

 2s !
x 2s

 2r !
( )-1 r y 2r
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  These double series differ only in their coefficients. Moreover, the differential coefficients f( )2r+2s+1( )0  are

the same. This means that there is no effect of irregular fluctuations in the Stiltjes constants  when comparing

both double series. This is the reason why this system of equations was chosen. An analytical comparison of

these zeros does not seem impossible.

Hypothesis 12.4.2

  When s   s =0,1,2,  are Stieltjes constansts and x , y are real numbers,

the following system of equations has no solution such that x  0 .


ue =  -

2  1/4-x 2 + y 2 2 
+ 4x 2y 2

1/4-x 2 + y 2

 + Σ
r=0



Σ
s=0


f( )2r+2s ( )0

 2s !
x 2s

 2r !
( )-1 r y 2r

 = 0 

ve =  -
 1/4-x 2 + y 2 2 

+ 4x 2y 2

x y
 + Σ

r=0



Σ
s=0


f( )2r+2s+2( )0

 2s +1 !
x 2s+1

 2r +1 !
( )-1 r y 2r+1

 = 0

  Where, f  ( )s ( )0  = Σ
t=0



t!

s+t  2
1 t

  = Σ
t=s



 t -s !

t  2
1 t-s

 , 00 = 1

Remark

  The partial derivatives of ue  with respect to y  is

y

ue
 =  

2  1/4-x 2 + y 2 2 
+ 4x 2y 2

2

 1/4-x 2 + y 2  4y 1/4-x 2 + y 2 +8x 2y
-
 1/4-x 2 + y 2 2 

+ 4x 2y 2

y

- Σ
r=0



Σ
s=0


f( )2r+2s+2( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1

 And, when x =-0.25 ,  ue , ve/x , -ue/y  are drawn as follows.

ve/x (orange) and -ue/y  (green) overlap, and ve/x (orange) is invisible.  Also in this case,  if we can

prove that the zeros of the following two series are close when y , then we can say that ue  and ve  do

not have common zeros..

Σ
r=0



Σ
s=0



2s +1
f( )2r+2s+2( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1

,    Σ
r=0



Σ
s=0


f( )2r+2s+2( )0

 2s !
x 2s

 2r +1 !
( )-1 r y 2r+1
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The differential coefficients f( )2r+2s+2( )0 are the same in both series.  So,  there is no effect of irregular

fluctuations in the Stiltjes constants on the comparison of both double series. Then, an analytical comparison

of these zeros is also likely.
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