
05 Power Series and Semi Multiple Series

Abstract

  While studying powers of series, I noticed that this can be expressed as a formula consisting of power series

and semi-multiple series. This expression is not unique, and as the power increases the expression becomes

more diverse. In the midst of all this, I found that these could be expressed in a unified way. we present this in

the first three sections.

  In the final section,  we present a fast calculation method that replaces the time-consuming calculation of

semi -multiple series with polynomials consisting of power series.

5.1 Head, Body and Tail

  The next lemma shows that the product of a polynomial and a power polynomial can be split into three parts:

 head, body, and tail.

Lemma 5.1.1

  When n , m  are natural numbers and ar1  is a real number, the following holds.

 Σ
r1=1

m

ar1 Σ
r1=0

m

ar1

n-1 = Σ
r1=1

m

ar1

n  + Σ
t=2

n -1

( )-1 t Σ
r1=1

m

ar1

n-t Ht  m  + ( )-1 n n Hn m (1.1n)

Where,

H2 m  = Σ
r1=1

m

Σ
 r2=r1+1

m

ar1 ar2

H3 m  = Σ
r1=1

m

Σ
 r2=r1+1

m

Σ
 r3=r2+1

m

ar1 ar2 ar3

       

Hn m  = Σ
r1=1

m

Σ
 r2=r1+1

m

Σ
 r3=r2+1

m

 Σ
 rn=rn-1+1

m

ar1 ar2 ar3
  arn

When n  2 , the 2 nd term of (1.1n) is ignored.

Proof

  Let a power polynomial as follows.

Gn m  = Σ
r1=1

m

ar1

n

Using these symbols, (1.1n)  can be written as follows,

G1 m Gn-1 m  = Gn m  + Σ
t=2

n -1

( )-1 t Gn-t  m  Ht  m  + ( )-1 n n Hn m (1.1n' )

We can prove (1.1n')  instead of  (1.1n).

  When n=3 , if G1( )3 G2( )3  is expanded and arranged

G1( )3 G2( )3  =  a1
3 + a2

3 + a3
3  + a1 

2a2 + a1 a2 
2 + a1 a3 

2 + a2 
2a3 + a1 a3 

2 + a2 a3 
2

Here,

G1( )3 H2( )3  = a1 
2a2 + a1 a2 

2 + a1 a3 
2 + a2 

2a3 + a1 a3 
2 + a2 a3 

2 + 3 a1 a2 a3
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So,

a1 
2a2 + a1 a2 

2 + a1 a3 
2 + a2 

2a3 + a1 a3 
2 + a2 a3 

2 =  G1( )3 H2( )3 - 3 H3( )3

Substituting this for the right side of G1( )3 G2( )3 ,

G1( )3 G2( )3  = G3( )3 + G1( )3 H2( )3 - 3 H3( )3 (1.13' )

Note that this equation holds true for any natural number m .

  When n=4 , if G1( )4 G3( )4  is expanded and arranged

G1( )4 G3( )4  =  a1
4 + a2

4 + a3
4 + a4

4  + a1 
3a2 + a1 a2 

3 +  + a3 a4 
3

Here,

G2( )4 H2( )4  =  a1 
3a2 + a1 a2 

3 +  + a3 a4 
3  + a1 

2a2a3 + a1 a2 
2a3 + + a2 a3 a4 

2

And

a1 
2a2a3 + a1 a2 

2a3 + + a2 a3 a4 
2 = G1( )4 H3( )4 - 4H4( )4

From these two fexpressions,

a1 
3a2 + a1 

3a3 +  + a3 a4 
3 = G2( )4 H2( )4  - G1( )4 H3( )4 + 4H4( )4

Substituting this for the right side of G1( )4 G3( )4 ,

G1( )4 G3( )4  =  G4( )4 + G2( )4 H2( )4 - G1( )4 H3( )4 + 4H4( )4 (1.14' )

Note that this equation holds true for any natural number m .

  When n=5 , if G1( )5 G4( )5  is expanded and arranged

G1( )5 G4( )5  =  a1
5 + a2

5 + a3
5 + a4

5 + a4
5  + a1 

4a2 + a1 a2 
4 +  + a4 a5 

4

Here,

G3( )5 H2( )5  =  a1 
4a2 + a1 a2 

4 +  + a4 a5 
4  + a1 

3a2a3 + a1 a2 
3a3 + + a3 a4 a5 

3

And

a1 
3a2a3 + a1 a2 

3a3 + + a3 a4 a5 
3 = G2( )5 H3( )5 - G1( )5 H4( )5 + 5H5( )5

From these two fexpressions,

a1 
4a2 + a1 a2 

4 +  + a4 a5 
4 =  G3( )5 H2( )5 - G2( )5 H3( )5 + G1( )5 H4( )5 - 5H5( )5

Substituting this for the right side of G1( )5 G4( )5 ,

G1( )5 G4( )5  = G5( )5 + G3( )5 H2( )5 - G2( )5 H3( )5 + G1( )5 H4( )5 - 5H5( )5 (1.15' )

  Hereafter, by induction,  we obtain

G1 m Gn-1 m  = Gn m  + Σ
t=2

n -1

( )-1 t Gn-t  m  Ht  m  + ( )-1 n n Hn m (1.1n' )

Let us run this in the mathematical processing software Mathematica . First, define the functions as follows.

- 2 -



Then, the upper row is input and the lower row is output.

Thus ,  (1.1n)  was obtained. Q.E.D.

Example  n=5

 Σ
r1=1

m

ar1 Σ
r1=1

m

ar1

5-1 = Σ
r1=1

m

ar1

5 + Σ
t=2

5-1

( )-1 t Σ
r1=1

m

ar1

5-t Ht  m  + ( )-1 5 5 H5 m

  If we express each  as Gn m ,Hn m  and verify it using  Mathematica ,  It is as follows.

Both m=6  and m=4  are verified,  and these equations are confirmed to be true.

When m=6

 

When m=4
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5.2 Split of Powers of Series (unified notation)

Theorem 5.2.1

  When n is natural number  s.t.  n 2 , m is natural number, and ar1 is real number,  the following holds.

 Σ
r1=1

m

ar1

n

 = Σ
r1=1

m

ar 
n + 2 Σ

r1=1

m

ar1

n-2

H2  m

+ Σ
s=0

n -3

 Σ
r1=1

m

ar1

s

 Σ
t =2

n -s-1

( )-1 t  Σ
r1=1

m

ar1 
n-s-t Ht  m +( )-1 n-s  n -s Hn-s  m (2.1n)

Where,

H2 m  = Σ
r1=1

m

Σ
 r2=r1+1

m

ar1 ar2

H3 m  = Σ
r1=1

m

Σ
 r2=r1+1

m

Σ
 r3=r2+1

m

ar1 ar2 ar3

       

Hn m  = Σ
r1=1

m

Σ
 r2=r1+1

m

Σ
 r3=r2+1

m

 Σ
 rn=rn-1+1

m

ar1 ar2 ar3
  arn

When n  2 , the 2 nd term of (2.1n) is ignored.

Proof

  Let a power polynomial as follows.

Gn m  = Σ
r1=1

m

ar1

n

Furthermore, abbreviate Gn m  , Hn m  as Gn , Hn  respectively. Then,

 Σ
r1=1

m

ar1

2

 = Σ
r1=1

m

ar1

2 + 2Σ
r1=1

m

Σ
 r2=r1+1

m

ar1 ar2

is represented as follows

G1
2 = G2 + 2H2 (2.12' )

Multiplying both sides by G1 ,

G1
3 = G1G3-1 + 2G1H2

From  Lemma 5.1.1 ,

G1G3-1 = G3 + Σ
t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3

Substituting this for the first term on the right side,

G1
3 = G3 + G1

0 Σ
t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3  + 2G1H2 (2.13' )

Multiplying both sides by G1 ,

G1
4 = G1G4-1 + G1

1 Σ
t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3  + 2G1
2H2
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From  Lemma 5.1.1 ,

G1G4-1 = G4 + Σ
t=2

4-1

( )-1 t G4-t Ht + ( )-1 4 4 H4

Substituting this for the first term on the right side,

G1
4 = G4 + G1

0 Σ
t=2

4-1

( )-1 t G4-t Ht + ( )-1 4 4 H4

+ G1
1 Σ

t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3  + 2G1
2H2 (2.14' )

Multiplying both sides by G1 ,

G1
5 = G1G5-1 + G1

1 Σ
t=2

4-1

( )-1 t G4-t Ht + ( )-1 4 4 H4

  + G1
2 Σ

t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3  + 2G1
3H2

From  Lemma 5.1.1 ,

G1
5 = G1G5-1 + G1

1 Σ
t=2

4-1

( )-1 t G4-t Ht + ( )-1 4 4 H4

Substituting this for the first term on the right side,

G1
5 = G5 + G1

0 Σ
t=2

5-1

( )-1 t G5-t Ht + ( )-1 5 5 H5

  + G1
1 Σ

t=2

4-1

( )-1 t G4-t Ht + ( )-1 4 4 H4

 + G1
2  Σ

t=2

3-1

( )-1 t G3-t Ht + ( )-1 3 3 H3  + 2G1
3H2 (2.15' )


The above can be unified as follows:

G1
n = Gn + Σ

s=0

n -3

G1
s Σ

t=2

n -1-s

( )-1 t Gn-s-t Ht + ( )-1 n-s  n -s Hn-s  + 2G1
n-2H2 (2.1n' )

And, putting  m back in place,

 Σ
r1=1

m

ar1

n

 = Σ
r1=1

m

ar 
n + 2 Σ

r1=1

m

ar1

n-2

H2  m

+ Σ
s=0

n -3

 Σ
r1=1

m

ar1

s

 Σ
t =2

n -s-1

( )-1 t Σ
r1=1

m

ar1 
n-s-t Ht  m +( )-1 n-s( )n -s Hn-s  m (2.1n)

(2.1n)  can be obtained by Mathematica .  If you input the top two lines,  the bottom two lines will be output.
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Example n=5 , m=4

 Σ
r1=1

4

ar1

5

 = Σ
r1=1

4

ar 
5 + 2 Σ

r1=1

4

ar1

5-2

H2 ( )4

+ Σ
s=0

5-3

 Σ
r1=1

4

ar1

s

 Σ
t =2

5-s-1

( )-1 t Σ
r1=1

4

ar1 
5-s-t Ht ( )4 +( )-1 5-s( )5-s H5-s ( )4

When this is calculated using  (2.1n' ) ,  it is as follows.

 

  As a corollary of  Theorem 5.2.1 , we obtain the following. However, since this is the original purpose, we will 

make it a separate theorem.

Theorem 5.2.2

  When n is natural number  s.t.  n 2 , for a convergent infinite series, the following holds.

 Σ
r1=1


ar1

n

 = Σ
r1=1


ar 

n + 2 Σ
r1=1


ar1

n-2

H2

+ Σ
s=0

n -3

 Σ
r1=1


ar1

s

 Σ
t =2

n -s-1

( )-1 t  Σ
r1=1


ar1 

n-s-t Ht +( )-1 n-s  n -s Hn-s (2.2n)

Where,

H2 = Σ
r1=1



Σ
 r2=r1+1


ar1 ar2

H3 = Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

       

Hn = Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


 Σ

 rn=rn-1+1


ar1 ar2 ar3

  arn

When n  2 , the 2 nd term of (2.2n) is ignored.
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Derivation

  In (2.1n' ) , replace [m ] with []  using Mathematica . Then,  the lower two lines are output  for the 

upper two lines.

 

Thus, we obtain  (2.2n) . Q.E.D.

First expantion

  The first expansion of  Theorem 5.2.2  for n =6  is as follows.

This is a unified notation that looks neat, but it is still a little difficult to understand unless we expand   with

the subscript t . Therefore, in the next section,  we will do a full expansion.
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5.3 Split of Powers of Series (specific notation)

  In this section, we fully expand the unified notation in the previous section and provide specific notations.

Formula 5.3.1

  For a convergent infinite series, the following holds.
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Derivation

  We use Mathematica  to prevent mistakes. Assume Gn m  , Hn m are defined as shown on  page 2 .

n=2

  Substitute n =2  for (2.1n)  in Theorem 5.2.1 and remove [m] . The 1 st line is the input and the 2 nd line

is the output.

 

Attach [2] to this and verify,  then

 

Replacing [2] with [] ,

 

n=3
  Substitute n =3  for (2.1n)  and  remove [m] .  Then,

 

Attach [3] to this and verify,  then
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Replacing [3] with [] ,

 

n=4
  Substitute n =4  for (2.1n)  and  remove [m] .  Then,

 

Summarizing with respect to H2 ,

 

Attach [4] to this and verify,  then

 

Replacing [4] with [] ,

 

n=5
  Substitute n =5  for (2.1n)  and  remove [m] .  Then,

 

Summarizing with respect to H2 , H3 ,
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Attach [5] to this and verify,  then

 

Replacing [5] with [] ,

 

n=6
  In a similar way to n =4,5 ,  n =69  are obtained . It is also possible to calculate n =10 ,  but this will

not be entered on paper, so we have omitted it.

Note

  A feature of  Formula 5.3.1  is that it is completely splitted into power series and semi-multiple series.

This is thought to be the reason why  Formula 5.3.1  was derived in a unified manner from  Theorem 5.2.1 .

Furthermore,  Formula 5.3.1 itself  could be written in a unified way,  but this would seem cumbersome.

Other Exprssions

  As mentioned at the beginning of this chapter, Formula 5.3.1 is not the only expression. There are countless

other expressions, many of which have incomplete or excessive divisions into power series and semi-multiple

series.  For example,

  Σ
r1=1


ar1

3

 = -2Σ
r1=1


ar1

3 + 3 Σ
r1=1


ar1 Σ

r1=1


ar1

2 + 6Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

  Σ
r1=1


ar1

4

 = 2Σ
r1=1


ar 

4 -   Σ
r1=1


ar1

2
2 

+ 4 Σ
r1=1


ar1 

2

Σ
r1=1



Σ
 r2=r1+1


ar1 ar2
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-  Σ
r1=1


ar1 Σ

r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

 + 8Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1


ar1 ar2 ar3

ar4

  Σ
r1=1


ar1

5

 = 6Σ
r=1


ar 

5 - 15 Σ
r1=1


ar1 Σ

r1=1


ar1

4 + 10 Σ
r1=1


ar1

2 Σ
r1=1


ar1

3

  + 20 Σ
r1=1


ar1

3 Σ
r1=1



Σ
 r2=r1+1


ar1 ar2

  + 30 Σ
r1=1



Σ
 r2=r1+1


ar1 ar2 Σ

r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

  + 30 Σ
r1=1


ar1 Σ

r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1


ar1 ar2 ar3 

ar4

  + 30Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



Σ
 r5=r4+1


ar1 ar2 ar3 

ar4 
ar5

  Σ
r1=1


ar1

6

 = 10 Σ
r1=1


ar1

3
2

 + 15 Σ
r1=1


ar1

2 Σ
r1=1


ar1

4 - 24 Σ
r1=1


ar1 Σ

r1=1


ar1

5

  + 30 Σ
r1=1


ar1

4 Σ
r1=1



Σ
 r2=r1+1


ar1 ar2

 - 90 Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

2

  + 60 Σ
r1=1


ar1  Σ

r1=1



Σ
 r2=r1+1


ar1 ar2 Σ

r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3

  - 60 Σ
r1=1


ar1

2 Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1


ar1 ar2 ar3 

ar4

  - 120 Σ
r1=1



Σ
 r2=r1+1


ar1 ar2

Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



ar1 ar2 ar3 
ar4

  + 120 Σ
r1=1


ar1 Σ

r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1



Σ
 r4=r3+1



Σ
 r5=r4+1


ar1 ar2 ar3 

ar4 
ar5
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5.4  Fast Calculation Method for Semi Multiple Series

  In this section,  we present a fast calculation method that replaces the time-consuming calculation of

semi -multiple series with polynomials consisting of power series.

Formula 5.4.1 ( Recursion )

  When n is natural number  s.t.  n 2 , for a convergent infinite series, the following holds.

H2 = 
2
1
 G1

2 - G2 (4.2)

Hn = 
n

( )-1 n 

G1
n - Gn - Σ

s=0

n -3 

Σ
t=2

n -1-s

( )-1 t G1
s Gn-s-t Ht

  - Σ
s=1

n -3

( )-1 n-sG1
s 
 n -s Hn-s - 2G1

n-2H2    n  3 (4.n)

Where,

Gn =  Σ
r1=1


ar1

n

H2 = Σ
r1=1



Σ
 r2=r1+1


ar1 ar2

H3 = Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


ar1 ar2 ar3



Hn = Σ
r1=1



Σ
 r2=r1+1



Σ
 r3=r2+1


 Σ

 rn=rn-1+1


ar1 ar2 ar3

  arn

Derivation

  Rewriting  Theorem 5.2.2  using the symbols Gn , Hn ,

When n = 2

G1
2 = G2 + 2H2  H2 =  G1

2 - G2 /2

When n  3

G1
n = Gn + Σ

s=0

n -3

G1
s Σ

t=2

n -1-s

( )-1 t Gn-s-t Ht + ( )-1 n-s  n -s Hn-s  + 2G1
n-2H2 (2.1n' )

Splitting this as follows,

G1
n = Gn + Σ

s=0

n -3

G1
sΣ

t=2

n -1-s

( )-1 t Gn-s-t Ht + Σ
s=0

n -3

G1
s( )-1 n-s  n -s Hn-s + 2G1

n-2H2

      = Gn + Σ
s=0

n -3

G1
sΣ

t=2

n -1-s

( )-1 t Gn-s-t Ht +( )-1 n n Hn + Σ
s=1

n -3

G1
s( )-1 n-s  n -s Hn-s + 2G1

n-2H2

From this,

( )-1 n n Hn = G1
n - Gn - Σ

s=0

n -3

G1
sΣ

t=2

n -1-s

( )-1 t Gn-s-t Ht  - Σ
s=1

n -3

G1
s( )-1 n-s  n -s Hn-s - 2G1

n-2H2

Dividing both sides by ( )-1 n n ,
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Hn = 
n

( )-1 n 

G1
n - Gn - Σ

s=0

n -3 

Σ
t=2

n -1-s

( )-1 t G1
s Gn-s-t Ht

  - Σ
s=1

n -3

( )-1 n-sG1
s 
 n -s Hn-s - 2G1

n-2H2 (4.n)

Q.E.D.

Executing a Recursive Formula

 Since these are recursive formulas, executing them using the mathematical processing software Mathematica

the following results are immediately obtained.

 

 

 

Fast Calculation Method for Semi Multiple Series

  Using these results, the calculation of semi-multiple series can be replaced by the calculation of power series

polynomials. Although The computational amount of the half multiple series Hm n  is as large as Ｃn m , the 

computational amount of the polynomial of the power series is small as seen above. Therefore, the effect of this 

substitution is enormous.

- 15 -



Example art
 = 1/rt

2

  The calculation for this example in Mathematica  is as follows:

 

(1) Semi-Triple Series

 

f 3 m  is a half triple series, and g3 m ] is the above H3  transcribed with  m  added.

When m=1000 , the calculation results are as follows. The two are completely consistent.

 

The computational amount of f 3( )1000 is Ｃ1000 3 = 166,167,000 , and the computational amount of

g3( )1000 is estimated at 3000 . As a result, the calculation time for f 3( )1000 was 10  minutes, and the 

calculation time for g3( )1000 was less than 1 second. FY I , my computer is Intel Core i7-9750H , 16GB.

(2) Semi-Quintuple Seriesi 

 

f 5 m  is a half quintuple series, and g5 m ] is the above H5  transcribed with  m  added.

When m=150 , the calculation results are as follows. The two are completely consistent.

 

The computational amount of f 5( )150 is Ｃ150 5 = 591,600,030 , and the computational amount of

g5( )150 is estimated at 1,050  =1507   As a result,  the calculation time for f 5( )150  was 61  

minutes, and the calculation time for g5( )150 was less than 1 second.

  Furthermore, g5( )5000 was calculated as follows. The calculation time was 1 second.

 

f 5( )5000 cannot be calculated.  The computational amount is Ｃ5000 5 = 25,989,619,781,251,000 .

Since the calculation amount 591,600,030  of f 5( )150 took about one hour ( 61 minutes) , the calculation

time for f 5( )5000  becomes as follows:
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25,989,619,781,251,000/591,600,030/24/365  5,015

That is,  it would take 5,000 years to calculate f 5( )5000  on my computer.

2025.01.22

2025.02.02  Added Sec.4

Kano Kono         

Hiroshima, Japan

Alien's Mathematics
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