13 Probability that the Riemann Hypothesis is false

Abstract

(1) The completed Riemann Zeta function $\xi(z)$ is expanded to Maclaurin series, and the values of coefficients A_r $r=1, 2, 3, \cdots$ are obtain.

(2) Present the Vieta's formula for the completed Riemann Zeta function $\xi(z)$.

(3) If the Riemann Hypothesis holds, then the semi-multiple series consisting of zeros on the critical line are equal to the polynomial of A_r .

(4) If the Riemann Hypothesis holds, then the power series consisting of zeros on the critical line are equal to the polynomial of A_r .

(5) Using (1) and (4), we calculate the probability that the Riemann Hypothesis is true, and obtain the probability that it is false.

13.1 Maclaurin Series of $\xi(z)$

The Maclaurin series of the completed Riemann Zeta function $\xi(z)$ is given in Theorem 9.1.3 of " **09 Maclaurin Series of Completed Riemann Zeta**". This is rewritten in a slightly different form as follows.

Theorem 13.1.1

Let the completed Riemann zeta function $\xi(z)$ and the Maclaurin series be as follows.

$$\xi(z) = -z(1-z)\pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \sum_{r=0}^{\infty} A_r z^r$$
(1.0)

Then, these coefficients A_r , $r=0, 1, 2, 3, \cdots$ are given by

$$A_{r} = \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\log^{r-s} \pi}{2^{r-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t}(3/2)}{2^{s-t} (s-t)!} h_{t}$$
(1.a)

Where, $\psi_n(z)$ is the polygamma function, $B_{n,k}(f_1, f_2, ...)$ is Bell polynomials, γ_r is Stieltjes constant,

$$g_r\left(\frac{3}{2}\right) = \begin{cases} 1 & r = 0\\ \sum_{k=1}^r B_{r,k}\left(\psi_0\left(\frac{3}{2}\right), \psi_1\left(\frac{3}{2}\right), \dots, \psi_{r-1}\left(\frac{3}{2}\right)\right) & r = 1, 2, 3, \dots \end{cases}$$
$$h_r = \begin{cases} 1 & r = 0\\ -\frac{\gamma_{r-1}}{(r-1)!} & r = 1, 2, 3, \dots \end{cases}$$

Example

The first four of (1.a) are

$$\begin{split} A_0 &= \frac{\log^0 \pi}{2^0 \, 0!} \frac{(-1)^0 g_0(3/2)}{2^0 \, 0!} h_0 = 1 \\ A_1 &= \frac{\log^1 \pi}{2^1 1!} - \frac{g_1(3/2)}{2^1 1!} - \frac{\gamma_0}{0!} \\ A_2 &= \frac{\log^2 \pi}{2^2 2!} + \frac{g_2(3/2)}{2^2 2!} - \frac{\gamma_1}{1!} - \frac{\log^1 \pi}{2^1 1!} \frac{g_1(3/2)}{2^1 1!} + \frac{g_1(3/2)}{2^1 1!} \frac{\gamma_0}{0!} - \frac{\log^1 \pi}{2^1 1!} \frac{\gamma_0}{0!} \\ A_3 &= \frac{\log^3 \pi}{2^3 3!} - \frac{g_3(3/2)}{2^3 3!} - \frac{\gamma_2}{2!} - \frac{\log^2 \pi}{2^2 2!} \frac{g_1(3/2)}{2^1 1!} - \frac{\log^2 \pi}{2^2 2!} \frac{\gamma_0}{0!} - \frac{g_2(3/2)}{2^2 2!} \frac{\gamma_0}{0!} \\ &+ \frac{\log^1 \pi}{2^1 1!} \frac{g_2(3/2)}{2^2 2!} - \frac{\log^1 \pi}{2^1 1!} \frac{\gamma_1}{1!} + \frac{g_1(3/2)}{2^1 1!} \frac{\gamma_1}{1!} + \frac{\log^1 \pi}{2^1 1!} \frac{g_1(3/2)}{2^1 1!} \frac{\gamma_0}{0!} \end{split}$$

The contents of g_r are polygamma functions, so further expanded, it is as follows

Clear [A, g, h,
$$\gamma$$
, ψ]

$$A_{\Gamma_{-}} := \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\text{Log} [\pi]^{r-s}}{2^{r-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t} [3/2]}{2^{s-t} (s-t)!} h_{t}$$

$$g_{\Gamma_{-}}\left[\frac{3}{2}\right] := If\left[\Gamma = 0, 1, \sum_{k=1}^{r} BellY\left[r, k, Tbl\psi\left[r, \frac{3}{2}\right]\right]\right]$$

$$h_{\Gamma_{-}} := If\left[\Gamma = 0, 1, -\frac{Y_{\Gamma-1}}{(r-1)!}\right]$$

$$Tbl\psi\left[r_{-}, z_{-}\right] := Table\left[\psi_{k}\left[z\right], \{k, 0, r-1\}\right]$$

$$A_{0} \qquad 1$$

$$A_{1} \qquad \frac{Log\left[\pi\right]}{2} - \gamma_{0} - \frac{1}{2}\psi_{0}\left[\frac{3}{2}\right]$$

$$A_{2} \qquad \frac{Log\left[\pi\right]^{2}}{8} - \frac{1}{2}Log\left[\pi\right]\gamma_{0} - \gamma_{1} - \frac{1}{4}Log\left[\pi\right]\psi_{0}\left[\frac{3}{2}\right] + \frac{1}{2}\gamma_{0}\psi_{0}\left[\frac{3}{2}\right] + \frac{1}{8}\left(\psi_{0}\left[\frac{3}{2}\right]^{2} + \psi_{1}\left[\frac{3}{2}\right]\right)$$

$$A_{3} \qquad \frac{Log\left[\pi\right]^{3}}{48} - \frac{1}{8}Log\left[\pi\right]^{2}\gamma_{0} - \frac{1}{2}Log\left[\pi\right]\gamma_{1} - \frac{\gamma_{2}}{2} - \frac{1}{16}Log\left[\pi\right]^{2}\psi_{0}\left[\frac{3}{2}\right] + \frac{1}{4}Log\left[\pi\right]\gamma_{0}\left[\frac{3}{2}\right] + \frac{1}{4}Log\left[\pi\right]\gamma_{0}\left[\frac{3}{2}\right]^{2} + \psi_{1}\left[\frac{3}{2}\right]\right) - \frac{1}{8}\gamma_{0}\left(\psi_{0}\left[\frac{3}{2}\right]^{2} + \psi_{1}\left[\frac{3}{2}\right]\right) + \frac{1}{48}\left(-\psi_{0}\left[\frac{3}{2}\right]^{3} - 3\psi_{0}\left[\frac{3}{2}\right]\psi_{1}\left[\frac{3}{2}\right] - \psi_{2}\left[\frac{3}{2}\right]\right)$$

Finally, these values are as follows.

Clear [A, g, h,
$$\gamma$$
, ψ]

$$A_{\Gamma_{-}} := \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\text{Log} [\pi]^{\Gamma-s}}{2^{\Gamma-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t} [3/2]}{2^{s-t} (s-t)!} h_{t}$$

$$g_{\Gamma_{-}} \left[\frac{3}{2}\right] := \text{If} \left[r = 0, 1, \sum_{k=1}^{r} \text{BellY} \left[r, k, \text{Tbl} \psi \left[r, \frac{3}{2}\right]\right] \right]$$

$$h_{\Gamma_{-}} := \text{If} \left[r = 0, 1, -\frac{\gamma_{\Gamma-1}}{(r-1)!}\right]$$

 $Tbl\psi[r_, z_] := Table[PolyGamma[k, z], \{k, 0, r - 1\}]$

 $\gamma_{s_{-}} := StieltjesGamma[s]$

SetPrecision[{A₁, A₂, A₃, A₄, A₅}, 14] {-0.0230957089661, 0.0233438645342, -0.0004979838499, 0.0002531817303, -5.0502548 $\times 10^{-6}$ }

SetPrecision [A_{16} , 100]

 $4.48434050724549449301299836454151304982257064073598498658915661958697360835750375 \times 10^{-19}$

13.2 Vieta's Formula in $\xi(z)$

13.2.1 Infinite-degree Equations and Vieta's formula

Reprinting Formula 3.2.1 from " 03 Vieta's formula in Infinite-degree Equation " (Infinite-degree Equation), it is as follows:

Formula 3.2.1 (Vieta's Formulas) (Reprint)

Assume that the function f(z) on the complex plane has zeros $z_1, z_2, z_3, z_4, \cdots$ and is completely factored as follows.

$$f(z) = \left(1 - \frac{z}{z_1}\right) \left(1 - \frac{z}{z_2}\right) \left(1 - \frac{z}{z_3}\right) \left(1 - \frac{z}{z_4}\right) \cdots$$

Then, f(z) is expanded to a power series as follows.

$$f(z) = 1 + a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \cdots$$
(2.0)

Where,

$$a_{1} = -\sum_{r_{1}=1}^{\infty} \frac{1}{z_{r_{1}}}$$

$$a_{2} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{1}{z_{r_{1}} z_{r_{2}}}$$

$$a_{3} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{1}{z_{r_{1}} z_{r_{2}} z_{r_{3}}}$$

$$a_{4} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{1}{z_{r_{1}} z_{r_{2}} z_{r_{3}} z_{r_{3}}}$$

$$\vdots$$

$$a_{n} = (-1)^{n} \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{n}=r_{n-1}+1}^{\infty} \frac{1}{z_{r_{1}} z_{r_{2}} z_{r_{3}} \cdots z_{r_{n}}}$$

Using this formula, the following theorem can be proven.

Theorem 13.2.1 (Infinite-degree Equation with Conjugate Complex Roots)

Assume that the function f(z) on the complex plane has zeros $z_k = x_k \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$) and is completely factored as follows.

$$f(z) = \prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k} \right) = \prod_{r=1}^{\infty} \left(1 - \frac{2x_r z}{x_r^2 + y_r^2} + \frac{z^2}{x_r^2 + y_r^2} \right)$$

Then, f(z) is expanded to a power series as follows.

$$f(z) = 1 + a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \cdots$$
(2.1)

Where,

$$\begin{aligned} a_{1} &= -\sum_{r_{1}=1}^{\infty} \frac{2x_{r_{1}}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \quad {}_{1}C_{1} = 1 \\ a_{2} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} + \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \quad {}_{2}C_{2} = 1 , \quad {}_{1}C_{0} = 1 \\ a_{3} &= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} + \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2} \left(x_{r_{1}} + x_{r_{1}} + x_{r_{2}} x_{r_{3}} + x_{r_{2}} x_{r_{3}} + x_{r_{3}} x_{r_{3}} + x_{r_{3}}^{2}\right)}{\left(x_{r_{1}}^{2} + y_{r_{3}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)} + \frac{2^{2} \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{3}}^{2}\right)}{\left(x_{r_{4}}^{2} + y_{r_{3}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{3}}^{2}\right)} - \frac{2^{2} \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)}{\left(x_{r_{4}}^{2} + y_{r_{3}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{3}}^{2}\right)} - \frac{2^{2} \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)\left(x_{r_{4}}^{2}$$

$$a_{5} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \sum_{r_{5}=r_{4}+1}^{\infty} \frac{2^{5} x_{r_{1}} x_{r_{2}} x_{r_{3}} x_{r_{4}} x_{r_{5}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right) \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right) \left(x_{r_{5}}^{2} + y_{r_{5}}^{2}\right)} \qquad 5C_{5} = 1$$
$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{3} \left(x_{r_{1}} x_{r_{2}} x_{r_{3}}^{2} + x_{r_{1}} x_{r_{2}} x_{r_{4}}^{2} + x_{r_{1}} x_{r_{3}} x_{r_{4}}^{2} + x_{r_{2}} x_{r_{3}} x_{r_{4}}^{2}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right) \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)} \qquad 4C_{3} = 4$$

$$-\sum_{r_1=1}^{\infty}\sum_{r_2=r_1+1}^{\infty}\sum_{r_3=r_2+1}^{\infty}\frac{2^1(x_{r_1}+x_{r_2}+x_{r_3})}{(x_{r_1}^2+y_{r_1}^2)(x_{r_2}^2+y_{r_2}^2)(x_{r_3}^2+y_{r_3}^2)}$$

$$_{3}C_{1} = 3$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n-2}=r_{2n-3}+1}^{\infty} \frac{2 \left((x_{r_{1}}x_{r_{2}} \cdots x_{r_{2n-2}} + x_{r_{1}}x_{r_{2}} \cdots x_{r_{2n-1}} + \dots + x_{r_{2}}x_{r_{3}} \cdots x_{r_{2n-1}} \right)}{\left((x_{r_{1}}^{2} + y_{r_{1}}^{2}) \left((x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots \left((x_{r_{2n-1}}^{2} + y_{r_{2n-1}}^{2}) + \dots + x_{r_{2}}x_{r_{2n-1}} \right)} \right)}$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n-2}=r_{2n-3}+1}^{\infty} \frac{2^{2n-4} \left((x_{r_{1}}x_{r_{2}} \cdots x_{r_{2n-4}} + x_{r_{1}}x_{r_{2}} \cdots x_{r_{2n-3}} + \dots + x_{r_{3}}x_{r_{4}} \cdots x_{r_{2n-2}} \right)}{\left((x_{r_{1}}^{2} + y_{r_{1}}^{2}) \left((x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots \left((x_{r_{2n-2}}^{2} + y_{r_{2n-2}}^{2}) + y_{r_{2n-2}}^{2} \right)} \right)}$$

$$2n-1C_{2n-2} = 2n-1$$

$$\begin{array}{c} \vdots \\ + \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n-n}=r_{2n-n-1}+1}^{\infty} \frac{2^0}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-n}}^2 + y_{r_{2n-n}}^2\right)} \\ \end{array} \right.$$

$$a_{2n+1} = -\sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n+1}=r_{2n}+1}^{\infty} \frac{2^{2n+1} x_{r_1} x_{r_2} \cdots x_{r_{2n+1}}}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n+1}}^2 + y_{r_{2n+1}}^2\right)}$$

$$2^{2n+1}C_{2n+1} = 1$$

$$-\sum_{r_{1}=1}^{\infty}\sum_{r_{2}=r_{1}+1}^{\infty}\cdots\sum_{r_{2n-1}=r_{2n-2}+1}^{\infty}\frac{2^{2n-2}\left(x_{r_{1}}x_{r_{2}}\cdots x_{r_{2n-1}}+x_{r_{1}}x_{r_{2}}\cdots x_{r_{2n}}+\cdots +x_{r_{2}}x_{r_{3}}\cdots x_{r_{2n}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\cdots\left(x_{r_{2n}}^{2}+y_{r_{2n}}^{2}\right)} \qquad 2nC_{2n-3}=2n$$

$$-\sum_{r_{1}=1}^{\infty}\sum_{r_{2}=r_{1}+1}^{\infty}\cdots\sum_{r_{2n-1}=r_{2n-2}+1}^{\infty}\frac{2^{2n-3}\left(x_{r_{1}}x_{r_{2}}\cdots x_{r_{2n-3}}+x_{r_{1}}x_{r_{2}}\cdots x_{r_{2n-2}}+\cdots +x_{r_{3}}x_{r_{4}}\cdots x_{r_{2n-1}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\cdots\left(x_{r_{2n-1}}^{2}+y_{r_{2n-1}}^{2}\right)}$$

$$:$$

$$-\sum_{r_{1}=1}^{\infty}\sum_{r_{2}=r_{1}+1}^{\infty}\cdots\sum_{r_{2n+1-n}=r_{2n-n}+1}^{\infty}\frac{2^{1}\left(x_{r_{1}}+x_{r_{2}}+\cdots+x_{r_{2n+1-n}}\right)}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\cdots\left(x_{r_{2n+1-n}}^{2}+y_{r_{2n+1-n}}^{2}\right)}$$

$$2n+1-nC_{2n+1-2n} = n+1$$

In addition, the binomial coefficient on the right hand side is the number of terms in the numerator of each semi-multiple series.

Proof

÷

Let the roots of (2.1) are $z_k = x_k \pm i y_k$, $y_k \neq 0$ ($k = 1, 2, 3, \cdots$). From Formula 3.2.1,

$$\prod_{k=1}^{\infty} \left(1 - \frac{z}{z_k} \right) = \prod_{r=1}^{\infty} \left(1 - \frac{z}{x_r - iy_r} \right) \left(1 - \frac{z}{x_r + iy_r} \right) = 0$$

i.e.

$$\prod_{r=1}^{\infty} \left(1 - \frac{2x_r z}{x_r^2 + y_r^2} + \frac{z^2}{x_r^2 + y_r^2} \right) = 0$$
(2.p)

For simplicity, we make the following substitution.

$$\frac{2x_r}{x_r^2 + y_r^2} = X_r \quad , \quad \frac{1}{x_r^2 + y_r^2} = I_r$$

Then, (2.p) becomes

$$\prod_{r=1}^{\infty} \left(1 - X_r z + I_r z^2 \right) = \left(1 - X_1 z + I_1 z^2 \right) \left(1 - X_2 z + I_2 z^2 \right) \left(1 - X_3 z + I_3 z^2 \right) \cdots$$
(2.p')

If (2.1) and (2.p') are compared and the coefficient of (2.1) is calculated, it is as follows.

$$\begin{split} a_{1} &= -X_{1} - X_{2} - X_{3} - \cdots = -\sum_{r_{n}=1}^{\infty} X_{r_{n}} \\ a_{2} &= X_{1} \left(X_{2} + X_{3} + X_{4} + \cdots \right) + X_{2} \left(X_{3} + X_{4} + X_{5} + \cdots \right) + X_{3} \left(X_{4} + X_{5} + X_{6} + \cdots \right) + \cdots + I_{1} + I_{2} + I_{3} + \cdots \\ &= \sum_{r_{n}=1}^{\infty} \sum_{r_{n}=1}^{\infty} X_{r_{n}} X_{r_{n}} X_{r_{n}} + \sum_{r_{n}=1}^{\infty} I_{r_{n}} \\ a_{3} &= -X_{1} X_{2} \left(X_{3} + X_{4} + X_{5} + \cdots \right) - X_{1} X_{3} \left(X_{4} + X_{5} + X_{6} + \cdots \right) - X_{1} X_{4} \left(X_{5} + X_{6} + X_{4} + \cdots \right) - \cdots \\ &- X_{2} X_{3} \left(X_{4} + X_{5} + X_{6} + \cdots \right) - X_{2} X_{4} \left(X_{5} + X_{6} + X_{4} + \cdots \right) - X_{2} X_{5} \left(X_{6} + X_{7} + X_{8} + \cdots \right) - \cdots \\ &= -X_{1} \left(I_{2} + I_{3} + I_{4} + \cdots \right) - X_{2} \left(I_{3} + I_{4} + I_{5} + \cdots \right) - X_{3} \left(I_{4} + I_{5} + I_{6} + \cdots \right) - \cdots \\ &= -I_{1} \left(X_{2} + X_{3} + X_{4} + \cdots \right) - I_{2} \left(X_{3} + X_{4} + X_{5} + \cdots \right) - I_{3} \left(X_{4} + X_{5} + X_{6} + \cdots \right) - \cdots \\ &= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}=1}^{\infty} X_{r_{1}} X_{r_{2}} X_{r_{3}} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \left(X_{r_{1}} I_{r_{1}} + I_{r_{1}} X_{r_{2}} \right) \\ a_{4} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}=1}^{\infty} \sum_{r_{4}=r_{3}=1}^{\infty} \sum_{r_{4}=r_{3}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_{r_{4}=r_{4}=1}^{\infty} \sum_{r_{4}=1}^{\infty} \sum_$$

Returning to the original symbol, we obtain $a_1 \sim a_4$. And we obtain a_{2n-1} , a_{2n} by induction. Q.E.D.

13.2.2 Relationship between zeros and coefficients of $\xi(z)$

Theorem 13.2.1 can be applied to the completed Riemann zeta function $\xi(z)$, yielding the following theorem.

Theorem 13.2.2

Let the completed Riemann zeta function $\xi(z)$ and the Maclaurin series be as follows.

$$\xi(z) = -z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \sum_{r=0}^{\infty} B_r z^r$$
(2.2)

Then the following expressions hold for non-trivial zeros $z_k = x_k \pm i y_k$, $y_k \neq 0$, $k = 1, 2, 3, \cdots$ of $\zeta(z)$.

$$B_{1} = -\sum_{r_{1}=1}^{\infty} \frac{2^{1} x_{r_{1}}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \qquad {}_{1}C_{1} = 1$$

$$B_{2} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{2} x_{r_{1}} x_{r_{2}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} + \sum_{r_{1}=1}^{\infty} \frac{2^{0}}{x_{r_{1}}^{2} + y_{r_{1}}^{2}} \qquad {}_{2}C_{2} = 1 , \quad {}_{1}C_{0} = 1$$

$$B_{3} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} x_{r_{1}} x_{r_{2}} x_{r_{3}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty} \frac{2^{1} \left(x_{r_{1}} + x_{r_{2}}\right)}{\left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right)} - \sum_{r_{1}=1}^{\infty} \sum_{r_{1}=1}^{\infty}$$

$$B_{4} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{4} x_{r_{1}} x_{r_{2}} x_{r_{3}} x_{r_{4}}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right) \left(x_{r_{4}}^{2} + y_{r_{4}}^{2}\right)} \qquad {}_{4}C_{4} = 1$$
$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{2} \left(x_{r_{1}} x_{r_{2}} + x_{r_{1}} x_{r_{3}} + x_{r_{2}} x_{r_{3}}\right)}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} \qquad {}_{3}C_{2} = 3$$
$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2} + y_{r_{1}}^{2}\right) \left(x_{r_{2}}^{2} + y_{r_{2}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)}{\left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right) \left(x_{r_{3}}^{2} + y_{r_{3}}^{2}\right)} \qquad {}_{3}C_{2} = 1$$

$$B_{5} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \sum_{r_{5}=r_{4}+1}^{\infty} \frac{(x_{r_{1}}^{2} + y_{r_{1}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2})(x_{r_{3}}^{2} + y_{r_{3}}^{2})(x_{r_{4}}^{2} + y_{r_{4}}^{2})(x_{r_{5}}^{2} + y_{r_{5}}^{2})} \qquad 5C_{5} = 1$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{2^{3}(x_{r_{1}}x_{r_{2}}x_{r_{3}} + x_{r_{1}}x_{r_{2}}x_{r_{4}} + x_{r_{1}}x_{r_{3}}x_{r_{4}} + x_{r_{2}}x_{r_{3}}x_{r_{4}})}{(x_{r_{1}}^{2} + y_{r_{1}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2})(x_{r_{3}}^{2} + y_{r_{3}}^{2})(x_{r_{4}}^{2} + y_{r_{4}}^{2})} \qquad 4C_{3} = 4$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{1}(x_{r_{1}} + x_{r_{2}} + x_{r_{3}})}{(x_{r_{1}}^{2} + y_{r_{2}}^{2})(x_{r_{3}}^{2} + y_{r_{3}}^{2})(x_{r_{4}}^{2} + y_{r_{4}}^{2})} \qquad 4C_{3} = 3$$

$$-\sum_{r_1=1}^{\infty}\sum_{r_2=r_1+1}^{\infty}\sum_{r_3=r_2+1}^{\infty}\frac{2^{-}(x_{r_1}+x_{r_2}+x_{r_3})}{(x_{r_1}^2+y_{r_1}^2)(x_{r_2}^2+y_{r_2}^2)(x_{r_3}^2+y_{r_3}^2)}$$

$$_{3}C_{1} = 3$$

$$B_{2n} = \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n}=r_{2n-1}+1}^{\infty} \frac{2^{2n} x_{r_1} x_{r_2} \cdots x_{r_{2n}}}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n}}^2 + y_{r_{2n}}^2\right)} \qquad 2nC_{2n} = 1$$

$$+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n-1}=r_{2n-2}+1}^{\infty} \frac{2^{2n-2} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-2}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-1}} + \cdots + x_{r_2} x_{r_3} \cdots x_{r_{2n-1}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-1}}^2 + y_{r_{2n-1}}^2\right)} \qquad 2n-1C_{2n-2} = 2n-1$$

$$+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n-2}=r_{2n-3}+1}^{\infty} \frac{2^{2n-4} \left(x_{r_1} x_{r_2} \cdots x_{r_{2n-4}} + x_{r_1} x_{r_2} \cdots x_{r_{2n-3}} + \cdots + x_{r_3} x_{r_4} \cdots x_{r_{2n-2}}\right)}{\left(x_{r_1}^2 + y_{r_1}^2\right) \left(x_{r_2}^2 + y_{r_2}^2\right) \cdots \left(x_{r_{2n-2}}^2 + y_{r_{2n-2}}^2\right)} \qquad 2n-2C_{2n-4}$$

$$\vdots$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n-n}=r_{2n-n-1}+1}^{\infty} \frac{2^{0}}{\left(x_{r_{1}}^{2}+y_{r_{1}}^{2}\right)\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)\cdots\left(x_{r_{2n-n}}^{2}+y_{r_{2n-n}}^{2}\right)}$$

$$2^{2n+1} x x \cdots x$$

$$B_{2n+1} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n+1}=r_{2n}+1}^{\infty} \frac{2^{2n-r} x_{r_{1}} x_{r_{2}} \cdots x_{r_{2n+1}}}{(x_{r_{1}}^{2} + y_{r_{2}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots (x_{r_{2n+1}}^{2} + y_{r_{2n+1}}^{2})} \qquad 2n+1C_{2n+1} = 1$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n}=r_{2n-1}+1}^{\infty} \frac{2^{2n-1} (x_{r_{1}} x_{r_{2}} \cdots x_{r_{2n-1}} + x_{r_{1}} x_{r_{2}} \cdots x_{r_{2n}} + \cdots + x_{r_{2}} x_{r_{3}} \cdots x_{r_{2n}})}{(x_{r_{1}}^{2} + y_{r_{1}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots (x_{r_{2n+1}}^{2} + y_{r_{2n}}^{2})} \qquad 2nC_{2n-3} = 2n$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n-1}=r_{2n-2}+1}^{\infty} \frac{2^{2n-3} (x_{r_{1}} x_{r_{2}} \cdots x_{r_{2n-3}} + x_{r_{1}} x_{r_{2}} \cdots x_{r_{2n-2}} + \cdots + x_{r_{3}} x_{r_{4}} \cdots x_{r_{2n-1}})}{(x_{r_{2}}^{2} + y_{r_{1}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots (x_{r_{2n-1}}^{2} + y_{r_{2n-1}}^{2})} \qquad 2n-1C_{2n-3}$$

$$\vdots$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n+1-n}=r_{2n-n}+1}^{\infty} \frac{2^{1} (x_{r_{1}}^{2} + x_{r_{2}}^{2} + \cdots + x_{r_{2n+1-n}})}{(x_{r_{1}}^{2} + y_{r_{1}}^{2})(x_{r_{2}}^{2} + y_{r_{2}}^{2}) \cdots (x_{r_{2n+1}}^{2} + y_{r_{2n+1-n}}^{2})} \qquad 2n+1C_{2n+1} = 1$$

In addition, the binomial coefficient on the right hand side is the number of terms in the numerator of each semi-multiple series.

Proof

÷

According to Theorem 8.3.1 in " **08 Factorization of Completed Riemann Zeta** ", when the Riemann Zeta Function is $\zeta(z)$ and the non-trivial zeros are $z_n = x_n \pm i y_n$ $n = 1, 2, 3, \dots$, The completed Riemann Zeta function $\xi(z)$ can be factorized as follows.

$$\xi(z) = \prod_{n=1}^{\infty} \left(1 - \frac{2x_n z}{x_n^2 + y_n^2} + \frac{z^2}{x_n^2 + y_n^2} \right)$$

Therefore Theorem 13.2.1 is applicable, the desired expressions hold. Q.E.D.

Note

This theorem holds true regardless of whether the Riemann hypothesis is true or not.

13.2.3 Case where the Riemann hypothesis is true

In this case, the only zeros are $1/2\pm y_{r_l}$. So B_1 , B_2 , B_3 , \cdots in Theorem 13.2.2 become as follows.

$$B_{1} = -\sum_{r_{1}=1}^{\infty} \frac{1C_{1}}{1/4 + y_{r_{1}}^{2}} \qquad {}_{1}C_{1} = 1$$

$$B_{2} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2C_{2}}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})} + \sum_{r_{1}=1}^{\infty} \frac{1C_{0}}{1/4 + y_{r_{1}}^{2}} \qquad {}_{2}C_{2} = 1, \ {}_{1}C_{0} = 1$$

$$B_{3} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{3C_{3}}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2C_{1}}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})} \qquad {}_{2}C_{1} = 2$$

$$\vdots$$

13.2.4 Case where the Riemann hypothesis is false

In this case, in addition to $1/2 \pm y_{r_t}$, there are also $1/2 \pm \alpha_{r_t} \pm \beta_{r_t} \left(0 < \alpha_{r_t} < 1/2 \right)$ as zeros.

So B_1 , B_2 , B_3 , \cdots in Theorem 13.2.2 become as follows.

$$\begin{split} B_{1} &= -\sum_{r_{1}=1}^{\infty} \frac{1C_{1}}{1/4 + y_{r_{1}}^{2}} - \sum_{r_{1}=1}^{2} \frac{2^{1} (1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2}}{(1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2}} - \sum_{r_{1}=1}^{2^{1} (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2}} \\ B_{2} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2C_{2}}{(1/4 + y_{r_{1}}^{2}) (1/4 + y_{r_{2}}^{2})} + \sum_{r_{1}=1}^{\infty} \frac{1C_{0}}{1/4 + y_{r_{1}}^{2}} \\ &+ \sum_{r_{1}=1} \sum_{r_{2}=r_{1}+1} \frac{2^{2} (1/2 + \alpha_{r_{1}}) (1/2 + \alpha_{r_{2}})}{\left\{ (1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2} \right\} \left\{ (1/2 + \alpha_{r_{2}})^{2} + \beta_{r_{2}}^{2} \right\}} + \sum_{r_{1}=1}^{2^{0}} \frac{2^{0}}{(1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2}} \\ &+ \sum_{r_{1}=1} \sum_{r_{2}=r_{1}+1} \frac{2^{2} (1/2 - \alpha_{r_{1}}) (1/2 - \alpha_{r_{2}})}{\left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{2}})^{2} + \beta_{r_{2}}^{2} \right\}} + \sum_{r_{1}=1}^{2^{0}} \frac{2^{0}}{(1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2}} \\ B_{3} &= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{3C_{3}}{(1/4 + y_{r_{1}}^{2}) (1/4 + y_{r_{2}}^{2}) (1/4 + y_{r_{2}}^{2})} \\ &- \sum_{r_{1}=1} \sum_{r_{2}=r_{1}+1} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2} \left\{ (1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2} \right\} \left\{ (1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 + \alpha_{r_{3}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 + \alpha_{r_{1}})^{2} + \beta_{r_{3}}^{2} \right\} \\ &- \sum_{r_{1}=1} \sum_{r_{2}=r_{1}+1} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{2^{3} (1/2 - \alpha_{r_{1}}) (1/2 - \alpha_{r_{2}}) (1/2 - \alpha_{r_{2}}) (1/2 - \alpha_{r_{3}})}{\left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{1}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{3}})^{2} + \beta_{r_{3}}^{2} \right\} \\ &- \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{2^{1}} \frac{2^{1} \left\{ (1/2 + \alpha_{r_{1}}) + (1/2 - \alpha_{r_{2}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{2}})^{2} + \beta_{r_{2}}^{2} \right\} - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{2^{1}} \frac{2^{1} \left\{ (1/2 - \alpha_{r_{1}}) + (1/2 - \alpha_{r_{2}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{2}}^{2} \right\} \left\{ (1/2 - \alpha_{r_{1}})^{2} + \beta_{r_{2}}^{2} \right\} \right\}$$

Note

(1) It is known that there are an infinite number of zeros on the critical line, but the number of zeros off the critical line is unknown.

(2) B_r $r=0, 1, 2, \cdots$ are the sum of 2 semi-multiple series, one with zeros on the critical line and the other with zeros off the critical line. (3) Since $0 < \alpha_{r_l} < 1/2$, semi-multiple series with zeros outside the critical line cannot cancel each other out to 0.

13.3 Proposition equivalent to the Riemann Hypothesis - 1

As seen in the previous section 13.2.3, if the Riemann hypothesis holds, then the following equivalent lemma holds.

Lemma 13.3.1

÷

Let the completed Riemann zeta function $\xi(z)$ and the Maclaurin series be as follows.

$$\xi(z) = -z(1-z) \pi^{-\frac{z}{2}} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \sum_{r=0}^{\infty} B_r z^r$$
(2.2)

Then the following expressions hold for non-trivial zeros $z_k = 1/2 \pm i y_k$, $y_k \neq 0$, $k = 1, 2, 3, \cdots$ of $\zeta(z)$.

$$B_{1} = -\sum_{r_{1}=1}^{\infty} \frac{{}_{1}C_{1}}{{}_{1}/4 + y_{r_{1}}^{2}} \qquad {}_{1}C_{1} = 1$$

$$B_{2} = \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{{}_{2}C_{2}}{{}_{1}/4 + y_{r_{1}}^{2}} \left(\frac{{}_{2}C_{2}}{{}_{1}/4 + y_{r_{2}}^{2}} \right) + \sum_{r_{1}=1}^{\infty} \frac{{}_{1}C_{0}}{{}_{1}/4 + y_{r_{1}}^{2}} \qquad {}_{2}C_{2} = 1, \ {}_{1}C_{0} = 1$$

$$B_{3} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{{}_{3}C_{3}}{{}_{1}/4 + y_{r_{2}}^{2}} \left(\frac{{}_{1}/4 + y_{r_{1}}^{2}}{{}_{2}/4 + y_{r_{2}}^{2}} \right) \left(\frac{{}_{1}/4 + y_{r_{3}}^{2}}{{}_{2}/4 + y_{r_{3}}^{2}} \right) - \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{{}_{2}C_{1}}{{}_{1}/4 + y_{r_{2}}^{2}} \left(\frac{{}_{2}C_{1}}{{}_{2}/4 + y_{r_{3}}^{2}} \right) \left(\frac{{}_{2}C_{2}}{{}_{2}/4 - z_{2}} \right) \left(\frac{{}_{2}C_{2}}{{}_{2}/4 - z_{2}} \right) \left(\frac{{}_{2}C_{2}}{{}_{2}/4 - z_{2}} \right) = \frac{{}_{2}C_{2}}{{}_{2}} \left(\frac{{}_{2}C_{1}}{{}_{2}/4 - z_{2}} \right) \left(\frac{{}_{2}C_{2}}{{}_{2}/4 - z_{2}} \right) \left(\frac{{}_{2}C_{2}}$$

$$\begin{aligned} B_{4} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{1}{(1/4+y_{r_{1}}^{2})(1/4+y_{r_{2}}^{2})(1/4+y_{r_{3}}^{2})(1/4+y_{r_{4}}^{2})} & 4C_{4} = 1 \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{3C_{2}}{(1/4+y_{r_{1}}^{2})(1/4+y_{r_{2}}^{2})(1/4+y_{r_{3}}^{2})} & 3C_{2} = 3 \\ &+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{2C_{0}}{(1/4+y_{r_{1}}^{2})(1/4+y_{r_{2}}^{2})(1/4+y_{r_{3}}^{2})} & 2C_{0} = 1 \end{aligned}$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{1}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})} = 2C_{0} = 1$$

$$= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{2}=r_{2}+1}^{\infty} \sum_{r_{2$$

$$B_{5} = -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \sum_{r_{5}=r_{4}+1}^{\infty} \frac{5C^{5}}{(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})(1/4 + y_{r_{4}}^{2})(1/4 + y_{r_{5}}^{2})} \qquad 5C_{5} = 1$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{4C_{3}}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})(1/4 + y_{r_{4}}^{2})} \qquad 4C_{3} = 4$$

$$-\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{3C_{1}}{(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})(1/4 + y_{r_{4}}^{2})} \qquad 3C_{1} = 3$$

$$-\sum_{r_1=1}\sum_{r_2=r_1+1}\sum_{r_3=r_2+1}\frac{3C_1}{\left(1/4+y_{r_1}^2\right)\left(1/4+y_{r_2}^2\right)\left(1/4+y_{r_3}^2\right)}$$

$$3C_1 = 3$$

-

$$B_{2n} = \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n}=r_{2n-1}+1}^{\infty} \frac{2nC_{2n}}{\left(1/4 + y_{r_1}^2\right)\left(1/4 + y_{r_2}^2\right)\cdots\left(1/4 + y_{r_{2n}}^2\right)} \qquad 2nC_{2n} = 1$$

$$+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n-1}=r_{2n-2}+1}^{\infty} \frac{2n-1C_{2n-2}}{\left(1/4 + y_{r_1}^2\right)\left(1/4 + y_{r_2}^2\right)\cdots\left(1/4 + y_{r_{2n-1}}^2\right)} \qquad 2n-1C_{2n-2} = 2n-1$$

$$+ \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_{2n-2}=r_{2n-3}+1}^{\infty} \frac{2n-2C_{2n-4}}{\left(1/4 + y_{r_1}^2\right)\left(1/4 + y_{r_2}^2\right)\cdots\left(1/4 + y_{r_{2n-2}}^2\right)} \qquad 2n-2C_{2n-4}$$

$$\vdots$$

$$+ \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{n}=r_{n-1}+1}^{\infty} \frac{{}^{n}C_{0}}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\cdots\left(1/4 + y_{r_{n}}^{2}\right)}$$

$$= 2n - nC_{2n-2n} = 1$$

$$= -\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n+1}=r_{2n}+1}^{\infty} \frac{2n + 1C_{2n+1}}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\cdots\left(1/4 + y_{r_{2n+1}}^{2}\right)}$$

$$= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n}=r_{2n-1}+1}^{\infty} \frac{2n C_{2n-3}}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\cdots\left(1/4 + y_{r_{2n}}^{2}\right)}$$

$$= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \cdots \sum_{r_{2n-1}=r_{2n-2}+1}^{\infty} \frac{2n - 1C_{2n-3}}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\cdots\left(1/4 + y_{r_{2n-1}}^{2}\right)}$$

$$= 2n - 1C_{2n-3}$$

$$= 2n - 1C_{2n-3}$$

$$= 2n - 1C_{2n-3}$$

$$-\sum_{r_{1}=1}^{\infty}\sum_{r_{2}=r_{1}+1}^{\infty}\cdots\sum_{r_{2n+1-n}=r_{2n-n}+1}^{\infty}\frac{n+1C_{1}}{\left(1/4+y_{r_{1}}^{2}\right)\left(1/4+y_{r_{2}}^{2}\right)\cdots\left(1/4+y_{r_{2n+1-n}}^{2}\right)} \qquad 2n+1-nC_{2n+1-2n}=n+1$$

However, this lemma is complicated. If we assume the Riemann hypothesis, a better proposition can be presented.

Proposition 13.3.2

_

Let n be a natural number, A_n be the constant obtained in Theorem 13.1.1, and y_{r_t} be a zero on the critical line of the Riemann Zeta function $\zeta(z)$. Then the following expression hollds.

$$H_{n} = \sum_{k=0}^{n} \frac{(-1)^{n}}{n} \binom{n-1+k}{n-1} (n-k) A_{n-k}$$
(3.2)

Where,

$$\begin{split} H_{1} &= \sum_{r_{1}=1}^{\infty} \frac{1}{1/4 + y_{r_{1}}^{2}} \\ H_{2} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{1}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)} \\ H_{3} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{1}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\left(1/4 + y_{r_{3}}^{2}\right)} \\ &\vdots \\ H_{n} &= \sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \cdots \sum_{r_{n}=r_{n-1}+1}^{\infty} \frac{1}{\left(1/4 + y_{r_{1}}^{2}\right)\left(1/4 + y_{r_{2}}^{2}\right)\left(1/4 + y_{r_{3}}^{2}\right)} \cdots \left(1/4 + y_{r_{n}}^{2}\right)} \end{split}$$

Proof

In Lemma 13.3.1, the binomial coefficients can be placed before Σ , $\Sigma\Sigma$, \cdots . So, if we abbreviate the semi-multiple series according to the provisos of the proposition, each equation in Lemma 13.3.1 can be written as follows.

$$B_{1} = -H_{1}$$

$$B_{2} = H_{2} + 1C_{0}H_{1}$$

$$B_{3} = -H_{3} - 2C_{1}H_{2}$$

$$B_{4} = H_{4} + 3C_{2}H_{3} + 2C_{0}H_{2}$$

$$B_{5} = -H_{5} - 4C_{3}H_{4} - 3C_{1}H_{3}$$

$$B_{6} = H_{6} + 5C_{4}H_{5} + 4C_{2}H_{4} + 3C_{0}H_{3}$$

$$B_{7} = -H_{7} - 6C_{5}H_{6} - 5C_{3}H_{5} - 4C_{1}H_{4}$$
:

Replacing the binomial coefficients with numerical values and swapping B_r and H,

$$H_{1} = -B_{1}$$

$$H_{2} = B_{2} - H_{1}$$

$$H_{3} = -B_{3} - 2H_{2}$$

$$H_{4} = B_{4} - 3H_{3} - H_{2}$$

$$H_{5} = -B_{5} - 4H_{4} - 3H_{3}$$

$$H_{6} = B_{6} - 5H_{5} - 6H_{4} - H_{3}$$

$$H_{7} = -B_{7} - 6H_{6} - 10H_{5} - 4H_{4}$$
:

Substituting H_r from the top in order using the recursive function of *Mathematica*,

$$H_{1} = -B_{1}$$

$$H_{2} = B_{1} + B_{2}$$

$$H_{3} = -2(B_{1} + B_{2}) - B_{3}$$

$$\begin{aligned} H_4 &= 5(B_1 + B_2) + 3B_3 + B_4 \\ H_5 &= -14(B_1 + B_2) - 9B_3 - 4B_4 - B_5 \\ H_6 &= 42(B_1 + B_2) + 28B_3 + 14B_4 + 5B_5 + B_6 \\ H_7 &= -132(B_1 + B_2) - 90B_3 - 48B_4 - 20B_5 - 6B_6 - B_7 \\ \vdots \end{aligned}$$

Here, according "The On-Line Encyclopedia of Integer Sequences", these coefficients are the constituent sequence of the Catalan triangle (OEIS A009766) and are given by

 $T(n,m) = {}_{n+m}C_n (n-m+1)/(n+1) \quad 0 \le m \le n$ Using this, above formulas can be expressed in general form as follows:

$$H_n = \sum_{k=0}^n \frac{(-1)^n}{n} \binom{n-1+k}{n-1} (n-k) B_{n-k} \qquad n = 1, 2, 3, \cdots$$

Finally, since the Maclaurin series of the completed Riemann Zeta function $\xi(z)$ is unique, $B_r = A_r$ $r = 1, 2, 3, \dots$. So, replacing B_r with A_r , we obtain the desired expression. Q.E.D.

Example

The first few of (3.2) are,

$$\sum_{r_{1}=1}^{\infty} \frac{1}{1/4 + y_{r_{1}}^{2}} = -A_{1} = 0.0230957089 \cdots$$

$$\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \frac{1}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})} = A_{1} + A_{2} = 0.000248155568 \cdots$$

$$\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \frac{1}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})} = -2(A_{1} + A_{2}) - A_{3} = 1.672713713 \times 10^{-6}$$

$$\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \sum_{r_{4}=r_{3}+1}^{\infty} \frac{1}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2})(1/4 + y_{r_{3}}^{2})(1/4 + y_{r_{3}}^{2})} = 5(A_{1} + A_{2}) + 3A_{3} + A_{4}$$

$$= 8.021073428 \times 10^{-9}$$

$$\sum_{r_{1}=1}^{\infty} \sum_{r_{2}=r_{1}+1}^{\infty} \sum_{r_{3}=r_{2}+1}^{\infty} \cdots \sum_{r_{5}=r_{4}+1}^{\infty} \frac{1}{(1/4 + y_{r_{1}}^{2})(1/4 + y_{r_{2}}^{2})(1/4 + y_{r_{3}}^{2}) \cdots (1/4 + y_{r_{5}}^{2})} = -14(A_{1} + A_{2}) - 9A_{3} - 4A_{4} - A_{5}$$

$$= 2.936055872 \times 10^{-11}$$

Semi-multiple Series and Theoretical Values

The left-hand sides of these expressions are semi-multiple series consisting of zeros on the critical line, and the right-hand sides are theoretical values consisting of $log \pi$, Stieltjes constants and the polygamma functions. To verify the validity of the Riemann hypothesis, we can take several zeros on the critical line, calculate the value of the semimultiple series, and compare it with the theoretical value.

The theoretical value can be calculated in an instant. However, calculating the semi-multiple series H_r is not easy. When the calculation of the half multiple series is truncated at m, the amount of calculations for H_r becomes ${}_mC_r$. For example, when the calculation is truncated at m=100, the amount of calculations for H_8 becomes $100C_8 = 186,087,894,300$. This is not a quantity that can be calculated on a laptop computer. We have to think of another way.

13.4 Proposition equivalent to the Riemann Hypothesis - 2

As mentioned at the end of the previous section, calculating semi-multiple series is not realistic. So what I came up with was to transfer the calculation of semi-multiple series to the calculation of power series. For example, in the case of a half double series, the following equation holds:

$$\sum_{r_1=1}^{\infty} \left(\frac{1}{1/4 + y_{r_1}^2} \right)^2 = \left(\sum_{r_1=1}^{\infty} \frac{1}{1/4 + y_{r_1}^2} \right)^2 - 2 \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2 \right) \left(1/4 + y_{r_2}^2 \right)}$$

Here, obtained in the previous section

$$\sum_{r_1=1}^{\infty} \frac{1}{1/4 + y_{r_1}^2} = -A_1 \qquad , \qquad \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2\right)\left(1/4 + y_{r_2}^2\right)} = A_1 + A_2$$

are substituted for the rhighr hand side,

$$\sum_{r_1=1}^{\infty} \left(\frac{1}{1/4 + y_{r_1}^2} \right)^2 = A_1^2 - 2(A_1 + A_2)$$

Thus, the calculation of a half-double series is transferred to the calculation of a square series. The latter converges much faster than the former. This example is 2 nd order, but the higher the deree the faster the convergence. Finding such a general formula is the purpose of this section.

Theorem 5.2.2 in " 05 Power Series and Semi Multiple Series " (Infinite degree Equation) was as follows:

Theorem 5.2.2 (Reprint)

When n is a natural number s.t. $n \ge 2$, the following holds for a convergent series.

$$\left(\sum_{r_{1}=1}^{\infty} a_{r_{1}}\right)^{n} = \sum_{r_{1}=1}^{\infty} a_{r}^{n} + 2\left(\sum_{r_{1}=1}^{\infty} a_{r_{1}}\right)^{n-2} H_{2} + \sum_{s=0}^{n-3} \left(\sum_{r_{1}=1}^{\infty} a_{r_{1}}\right)^{s} \left(\sum_{t=2}^{n-s-1} (-1)^{t} \left(\sum_{r_{1}=1}^{\infty} a_{r_{1}}^{n-s-t}\right) H_{t} + (-1)^{n-s} (n-s) H_{n-s}\right)$$

$$(2.2_{n})$$

Where,

$$\begin{split} H_2 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} a_{r_1} a_{r_2} \\ H_3 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} a_{r_1} a_{r_2} a_{r_3} \\ &\vdots \\ H_n &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \cdots \sum_{r_n=r_{n-1}+1}^{\infty} a_{r_1} a_{r_2} a_{r_3} \cdots a_{r_n} \end{split}$$

When $n \leq 2$, the 3 rd term of (2.2_n) is ignored.

From this theorem, we obtain the following lemma.

Lemma 13.4.1

When *n* is a natural number s.t. $n \ge 2$ and y_r , $t = 1, 2, 3, \cdots$ are non-zeoro real numbers, the following holds for a convergent series

$$G_{1}^{n} = G_{n} + 2G_{1}^{n-2}H_{2} + \sum_{s=0}^{n-3}G_{1}^{s} \left(\sum_{t=2}^{n-s-1}(-1)^{t}G_{1}^{n-s-t}H_{t} + (-1)^{n-s}(n-s)H_{n-s}\right)$$
(4.1)

Where,

$$\begin{split} G_n &= \sum_{r_1=1}^{\infty} \left(\frac{1}{1/4 + y_{r_1}^2} \right)^n \qquad n = 1, 2, 3, \cdots \\ H_2 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2 \right) \left(1/4 + y_{r_2}^2 \right)} \\ H_3 &= \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \sum_{r_3=r_2+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2 \right) \left(1/4 + y_{r_2}^2 \right) \left(1/4 + y_{r_3}^2 \right)} \\ &\vdots \end{split}$$

$$H_n = \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_n=r_{n-1}+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2\right) \left(1/4 + y_{r_2}^2\right) \cdots \left(1/4 + y_{r_n}^2\right)}$$

When $n \leq 2$, the 3 rd term of (4.1) is ignored.

Proof

In Theorem 5.2.2, let

$$a_{r_n} = \frac{1}{1/4 + y_{r_n}^2}$$
, $G_n = \sum_{r_1=1}^{\infty} \left(\frac{1}{1/4 + y_{r_1}^2}\right)^n$ $n = 1, 2, 3, \cdots$

Then,

$$G_1 = \sum_{r_1=1}^{\infty} \frac{1}{1/4 + y_{r_1}^2} = H_1$$

Therefore, (2.2n) and the belows are expressed as follows.

$$G_{1}^{n} = G_{n} + 2G_{1}^{n-2}H_{2} + \sum_{s=0}^{n-3}G_{1}^{s} \left(\sum_{t=2}^{n-s-1}(-1)^{t}G_{1}^{n-s-t}H_{t} + (-1)^{n-s}(n-s)H_{n-s}\right)$$

Where,

$$H_n = \sum_{r_1=1}^{\infty} \sum_{r_2=r_1+1}^{\infty} \cdots \sum_{r_n=r_{n-1}+1}^{\infty} \frac{1}{\left(1/4 + y_{r_1}^2\right) \left(1/4 + y_{r_2}^2\right) \cdots \left(1/4 + y_{r_n}^2\right)} \qquad n = 2, 3, 4, \cdots$$
Q.E.D.

Example

The first few of (4.1) are,

$$\begin{aligned} G_1^2 &= G_2 + 2H_2 \\ G_1^3 &= G_3 + 3G_1H_2 - 3H_3 \\ G_1^4 &= G_4 + 3G_1^2H_2 + G_2H_2 - 4G_1H_3 + 4H_4 \\ G_1^5 &= G_5 + 3G_1^3H_2 + G_1G_2H_2 + G_3H_2 - 4G_1^2H_3 - G_2H_3 + 5G_1H_4 - 5H_5 \end{aligned}$$

Problem with Lemma 13.4.1

For given y_{r_t} $t = 1, 2, 3, \dots$, these equations can be checked, but the computation speed of H_n slows exponentially as n increases. The best way to solve this problem is to eliminate H_n . In general, we do not expect such luck. But if y_{r_t} are zeros on the critical line of the Riemann Zeta function $\zeta(z)$, we can replace H_n with a constant using Proposition 13.3.2 in the previous section. Thus we obtain the following proposition, which is equivalent to the Riemann hypothesis.

Proposition 13.4.2

When *n* is a natural number s.t. $n \ge 2$ and A_n is the constant obtained in Theorem 13.1.1, the following expression holds.

$$G_{n} = G_{1}^{n} - 2G_{1}^{n-1}H_{2} - \sum_{s=0}^{n-3}G_{1}^{s} \left(\sum_{t=2}^{n-s-1}(-1)^{t}G_{n-s-t}H_{t} + (-1)^{n-s}(n-s)H_{n-s}\right)$$
(4.2)

Where,

$$G_{n} = \sum_{r_{1}=1}^{\infty} \left(\frac{1}{1/4 + y_{r_{1}}^{2}} \right)^{n} \qquad n = 1, 2, 3, \cdots$$

$$H_{n} = \sum_{k=0}^{n} \frac{(-1)^{n}}{n} \binom{n-1+k}{n-1} (n-k)A_{n-k} \qquad n = 2, 3, 4, \cdots$$

$$G_{1} = -A_{1} \qquad (=H_{1})$$

When $n \leq 2$, the 3 rd term of (4.2) is ignored.

Proof

In the formula of Lemma 13.4.1, exchange G_1^n and G_n . And replace H_n with the formula of Proposition 13.3.2 in the previous section.

At this time, replace $H_1 = -A_1$ with $G_1 = -A_1$. Q.E.D.

Example

If this proposition is computed as a recursive formula using *Mathematica*, the first few of (4.2) are as follows.

Clear [G, H, A]

$$G_{n_{-}} := G_{1}^{n} - \sum_{s=0}^{n-3} G_{1}^{s} \left(\sum_{t=2}^{n-1-s} (-1)^{t} G_{n-s-t} H_{t} + (-1)^{n-s} (n-s) H_{n-s} \right) - 2 G_{1}^{n-2} H_{2}$$

 $H_{n_{-}} := \sum_{k=0}^{n} \frac{(-1)^{n}}{n} Binomial [n-1+k, n-1] (n-k) A_{n-k}$
 $G_{1} := -A_{1}$
Expand [G₂] $-2 A_{1} + A_{1}^{2} - 2 A_{2}$
Expand [G₃] $-6 A_{1} + 3 A_{1}^{2} - A_{1}^{3} - 6 A_{2} + 3 A_{1} A_{2} - 3 A_{3}$
Expand [G₄] $-20 A_{1} + 10 A_{1}^{2} - 4 A_{1}^{3} + A_{1}^{4} - 20 A_{2} + 12 A_{1} A_{2} - 4 A_{1}^{2} A_{2} + 2 A_{2}^{2} - 12 A_{3} + 4 A_{1} A_{3} - 4 A_{4}$
Expand [G₆] $-70 A_{1} + 35 A_{1}^{2} - 15 A_{1}^{3} + 5 A_{1}^{4} - A_{1}^{5} - 70 A_{2} + 45 A_{1} A_{2} - 20 A_{1}^{2} A_{2} + 5 A_{1}^{3} A_{2} + 10 A_{2}^{2} - 5 A_{1} A_{2}^{2} - 45 A_{3} + 20 A_{1} A_{3} - 5 A_{1}^{2} A_{3} + 5 A_{2} A_{3} - 20 A_{4} + 5 A_{1} A_{4} - 5 A_{5}$
Expand [G₆] $-252 A_{1} + 126 A_{1}^{2} - 56 A_{1}^{3} + 21 A_{1}^{4} - 6 A_{1}^{5} + A_{1}^{6} - 252 A_{2} + 168 A_{1} A_{2} - 84 A_{1}^{2} A_{2} + 23 A_{3}^{3} + 30 A_{2} A_{3} - 6 A_{1}^{4} A_{2} + 42 A_{2}^{2} - 30 A_{1} A_{2}^{2} + 9 A_{1}^{2} A_{2}^{2} - 2 A_{3}^{3} - 168 A_{3} + 84 A_{1} A_{3} - 30 A_{1}^{2} A_{3} + 6 A_{1}^{3} A_{3} + 30 A_{2} A_{3} - 12 A_{1} A_{2} A_{3} + 3 A_{3}^{2} - 84 A_{4} + 30 A_{1} A_{4} - 6 A_{1}^{2} A_{4} + 6 A_{2} A_{4} - 30 A_{5} + 6 A_{1} A_{5} - 6 A_{6}$
Expand [G₁₆] $-155 117 520 A_{1} + 77 558 760 A_{1}^{2} - 3742 160 A_{1}^{3} + 17 383 860 A_{1}^{4} - 7726 160 A_{1}^{5} + 3268760 A_{1}^{6} - 1307 504 A_{1}^{7} + 490 314 A_{1}^{8} - 170544 A_{1}^{9} + 54 264 A_{1}^{10} - 155 344 A_{1}^{2} A_{2} - 816 A_{1}^{13} + 136 A_{1}^{14} - 16 A_{1}^{15} A_{1}^{16} - 155 117 520 A_{2} + 112 232 6480 A_{1} A_{2} - 69535 440 A_{1}^{2} A_{2} - 542 640 A_{1}^{8} A_{2} - 19612 560 A_{1}^{4} A_{2} + 9152 528 A_{1}^{5} A_{2} - 3922 512 A_{1}^{6} A_{2} + 1534 896 A_{1}^{7} A_{2} - 542 640 A_{1}^{8} A_{2} + 170 544 A_{1}^{9} A_{2} - 46 512 A_{1}^{16} A_{2} + 10 608 A_{1}^{11} A_{2} - 1904 A_{1}^{12} A_{2} + 240 A_{1}^{13} A_{2} - 16 A_{1}^{14} A_$

The middle parts were omitted

:

 $3808 A_{1} A_{2} A_{11} + 720 A_{1}^{2} A_{2} A_{11} - 64 A_{1}^{3} A_{2} A_{11} - 240 A_{2}^{2} A_{11} + 48 A_{1} A_{2}^{2} A_{11} + 1904 A_{3} A_{11} - 480 A_{1} A_{3} A_{11} + 48 A_{1}^{2} A_{3} A_{11} - 32 A_{2} A_{3} A_{11} + 240 A_{4} A_{11} - 32 A_{1} A_{4} A_{11} + 16 A_{5} A_{11} - 46 512 A_{12} + 10 608 A_{1} A_{12} - 1904 A_{1}^{2} A_{12} + 240 A_{1}^{3} A_{12} - 16 A_{1}^{4} A_{12} + 1904 A_{2} A_{12} - 480 A_{1} A_{2} A_{12} + 48 A_{1}^{2} A_{2} A_{12} - 16 A_{2}^{2} A_{12} + 1904 A_{2} A_{12} - 480 A_{1} A_{2} A_{12} + 48 A_{1}^{2} A_{2} A_{12} - 16 A_{2}^{2} A_{12} + 240 A_{3} A_{12} - 32 A_{1} A_{3} A_{12} + 16 A_{4} A_{12} - 10608 A_{13} + 1904 A_{1} A_{13} - 240 A_{1}^{2} A_{13} + 16 A_{1}^{3} A_{13} + 240 A_{2} A_{13} - 32 A_{1} A_{2} A_{13} + 16 A_{3} A_{13} - 1904 A_{14} + 240 A_{1} A_{14} - 16 A_{1}^{2} A_{14} + 16 A_{2} A_{14} - 240 A_{15} + 16 A_{1} A_{15} - 16 A_{16}$

Note

The last G_{16} is a long list of 3.3 pages, but it took about 2 seconds to output.

13.5 Probability that the Riemann Hypothesis is false

According Theorem 13.1.1 and Proposition 13.4.2, we calculate this probability using Mathematica. The tools are as follows.

 $Tbl\psi[r_, z_] := Table[PolyGamma[k, z], \{k, 0, r - 1\}]$

$$\begin{aligned} \gamma_{s_{-}} &:= \text{StieltjesGamma}[s] \\ g_{r_{-}} \left[\frac{3}{2} \right] &:= \text{If} \left[r = 0, 1, \sum_{k=1}^{r} \text{BellY} \left[r, k, \text{Tbl} \psi \left[r, \frac{3}{2} \right] \right] \right] \\ h_{r_{-}} &:= \text{If} \left[r = 0, 1, -\frac{\gamma_{r-1}}{(r-1)!} \right] \\ A_{r_{-}} &:= \sum_{s=0}^{r} \sum_{t=0}^{s} \frac{\text{Log} \left[\pi \right]^{r-s}}{2^{r-s} (r-s)!} \frac{(-1)^{s-t} g_{s-t} \left[3/2 \right]}{2^{s-t} (s-t)!} h_{t} \end{aligned}$$

y_r := Im[ZetaZero[r]]

The first 5 lines are a tool to find the theoretical value A_r according to **Theorem 13.1.1**. The last y_r is the zero point on the critical line. Using these, the values of A_r and y_r are obtained quickly. Hereafter, calculations are performed for each degree according to the equation of **Proposition 13.4.2**.

5 th degree

$$f5[m_] := \sum_{r=1}^{m} \left(\frac{1}{1/4+y_{r}^{2}}\right)^{5}$$

g5 := $-70 A_1 + 35 A_1^2 - 15 A_1^3 + 5 A_1^4 - A_1^5 - 70 A_2 + 45 A_1 A_2 - 20 A_1^2 A_2 + 5 A_1^3 A_2 + 10 A_2^2 - 5 A_1 A_2^2 - 45 A_3 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 + 5 A_2 A_3 - 20 A_4 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_3 - 5 A_1^2 A_3 - 20 A_1 + 5 A_1 A_4 - 5 A_5 + 20 A_1 A_5 + 20 A$

f5(m) is the sum of the 5 th power, and g_5 is the righ side of Proposition 13.4.2. In fact, this is a copy and paste of the example from the previous section. If we take 30,000 zeros on the critical line and calculate them, it is as follows.

SetPrecision[f5[30000], 50]

$3.193891860867324232312252874264050295312571859744 \times 10^{-12}$

SetPrecision[g5, 50]

$3.19389186086732423231225287429394519 \times 10^{-12}$

The 29 digits on both sides are the same. So, dividing the left side by the right side,

3.1938918608673242323122528742640502953125718597438417052068513391`49.15040414601467*\ ^-12 / 3.1938918608673242323122528742939451943793138898`35.60665719160085*^-12

0.999999999999999999999999999999999639978

 9.36002×10^{-30}

This includes residual zeros on the critical line and possible zeros off the critical line. Therefore, the probability that the complementary event contains zeros outside the critical line is less than 10^{-29} . i.e. Probability that the Riemann Hypothesis is false is less than 10^{-29} .

6 th degree

In a similar way, calculating for 30,000 zeros on the critical line , it is as follows.

$$f6[m_] := \sum_{r=1}^{m} \left(\frac{1}{1/4 + y_r^2} \right)^6$$

 $g6 := -252 A_1 + 126 A_1^2 - 56 A_1^3 + 21 A_1^4 - 6 A_1^5 + A_1^6 - 252 A_2 + 168 A_1 A_2 - 84 A_1^2 A_2 + 30 A_1^3 A_2 - 6 A_1^4 A_2 + 42 A_2^2 - 30 A_1 A_2^2 + 9 A_1^2 A_2^2 - 2 A_2^3 - 168 A_3 + 84 A_1 A_3 - 30 A_1^2 A_3 + 6 A_1^3 A_3 + 30 A_2 A_3 - 12 A_1 A_2 A_3 + 3 A_3^2 - 84 A_4 + 30 A_1 A_4 - 6 A_1^2 A_4 + 6 A_2 A_4 - 30 A_5 + 6 A_1 A_5 - 6 A_6$

SetPrecision[f6[30000], 60]

 $\textbf{1.5758900881660589337799692874508976343743641494459095396006} \times \textbf{10}^{-14}$

SetPrecision[g6, 60]

 $\textbf{1.575890088166058933779969287450897638052892 \times 10^{-14}}$

- 1.5758900881660589337799692874508976343743641494459095396005637869169155469583604299` 59.07122205853604*^-14 /

1 - %

2.334254 \times 10⁻³⁶

That is, the sum of the 6 th powers of 30,000 zeros on the critical line is 35 nines (35N) of the theoretical value. So, the probability that the Riemann Hypothesis is false is less than 10^{-35} . The precision of the calculation is 6 digits higher than that of the 5 th degree. This is due to the faster convergence speed of the 6 th degree.

16 th degree

Finally, jump and perform this calculation. The number of zeros on the critical line is 30,000, the same as in the previous two examples.

g16 := -155 117 520 A₁ + 77 558 760 A₁² - 37 442 160 A₁³ + 17 383 860 A₁⁴ - 7 726 160 A₁⁵ + 3 268 760 A₁⁶ -1 307 504 A⁷₁ + 490 314 A⁸₁ - 170 544 A⁹₁ + 54 264 A¹⁰₁ - 15 504 A¹¹₁ + 3876 A¹²₁ - 816 A¹³₁ + 136 A¹⁴₁ - $16 \, A_{1}^{15} + A_{1}^{16} - 155 \, 117 \, 520 \, A_{2} + 112 \, 326 \, 480 \, A_{1} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 69 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{2} \, A_{2} + 38 \, 630 \, 800 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, 440 \, A_{1}^{3} \, A_{2} - 60 \, 535 \, A_{1}^{3} \, A_{2} \, A_{2} \, A_{2}^{3} \, A_{2} \, A_{2}^{3} \, A_{2}$ 19 612 560 $A_1^4 A_2 + 9 152 528 A_1^5 A_2 - 3 922 512 A_1^6 A_2 + 1 534 896 A_1^7 A_2 - 542 640 A_1^8 A_2 + 1 534 896 A_1^8 A_2 + 1 536 896 A_1^8 A_2 + 1 536 896 A_1^8 A_2 + 1 536 896 A$ 38 6 30 800 $A_1 A_2^2$ + 29 4 18 840 $A_1^2 A_2^2$ - 18 305 0 56 $A_1^3 A_2^2$ + 9 806 280 $A_1^4 A_2^2$ - 4 604 6 88 $A_1^5 A_2^2$ + 1 899 240 $A_1^6 A_2^2$ - 682 176 $A_1^7 A_2^2$ + 209 304 $A_1^8 A_2^2$ - 53 040 $A_1^9 A_2^2$ + 10 472 $A_1^{10} A_2^2$ - 1440 $A_1^{11} A_2^2$ + 104 $A_1^{12} A_2^2 - 6537520 A_2^3 + 9152528 A_1 A_2^3 - 7845024 A_1^2 A_2^3 + 5116320 A_1^3 A_2^3 - 2713200 A_1^4 A_2^3 + 2000 A_1^4 A_2^3 + 20$ 1 193 808 $A_1^5 A_2^3 - 434 112 A_1^6 A_2^3 + 127 296 A_1^7 A_2^3 - 28 560 A_1^8 A_2^3 + 4400 A_1^9 A_2^3 - 352 A_1^{10} A_2^3 + 980 628 A_2^4 - 320 A_2^{10} A_2^3 + 320 A_2^{$ 1 534 896 $A_1 A_2^4 + 1$ 356 600 $A_1^2 A_2^4 - 852720 A_1^3 A_2^4 + 406980 A_1^4 A_2^4 - 148512 A_1^5 A_2^4 + 39984 A_1^6 A_2^4 - 148512 A_1^5 A_2^4 + 39984 A_1^6 A_2^4 - 148512 A_1^5 A_2^4 + 148512 A_1^5 A_1^5 + 148512 A_1^5 A_2^5 + 148512 A_1^5 A_2^5 + 148512 A_1^5 A_2^5 + 148512 A_1^5 A_2^5 + 148512 A_1^5 A_1^5 + 148512 A_1^5 + 148514$ 7200 $A_1^7 A_2^4$ + 660 $A_1^8 A_2^4$ - 108 528 A_2^5 + 170 544 $A_1 A_2^5$ - 139 536 $A_1^2 A_2^5$ + 74 256 $A_1^3 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^3 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ - 26 656 $A_1^4 A_2^5$ + 72 256 $A_1^4 A_2^5$ + 72 256 A_1^4 A_2^5 + 72 256 $A_1^4 A_2^5$ + 72 256 A_1^4 A_2^5 240 A₁ A₂⁷ - 64 A₁² A₂⁷ + 2 A₂⁸ - 112 326 480 A₃ + 69 535 440 A₁ A₃ - 38 630 800 A₁² A₃ + 19 612 560 A₁³ A₃ -9 152 528 A₁⁴ A₃ + 3 922 512 A₁⁵ A₃ - 1 534 896 A₁⁶ A₃ + 542 640 A₁⁷ A₃ - 170 544 A₁⁸ A₃ + 46 512 A₁⁹ A₃ - $10\,608\,A_{1}^{10}\,A_{3}\,+\,1904\,A_{1}^{11}\,A_{3}\,-\,240\,A_{1}^{12}\,A_{3}\,+\,16\,A_{1}^{13}\,A_{3}\,+\,38\,630\,800\,A_{2}\,A_{3}\,-\,39\,225\,120\,A_{1}\,A_{2}\,A_{3}\,+\,10\,A_{1}^{12}\,A_{1}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,10\,A_{1}^{12}\,A_{2}\,+\,1$ 372 096 A₁⁷ A₂ A₃ + 95 472 A₁⁸ A₂ A₃ - 19 040 A₁⁹ A₂ A₃ + 2640 A₁¹⁰ A₂ A₃ - 192 A₁¹¹ A₂ A₃ - 9152 528 A₂² A₃ + 11767536 $A_1 A_2^2 A_3 - 9209376 A_1^2 A_2^2 A_3 + 5426400 A_1^3 A_2^2 A_3 - 2558160 A_1^4 A_2^2 A_3 + 976752 A_1^5 A_2^2 A_3 - 2558160 A_1^4 A_2^2 A_3 + 976752 A_1^5 A_2^2 A_3 - 2558160 A_1^4 A_2^2 A_3 + 976752 A_1^5 A_2^2 A_3 - 2558160 A_1^4 A_2^2 A_3 + 976752 A_1^5 A_2^2 A_3 - 2558160 A_1^4 A_2^2 A$ 297 024 A₁⁶ A₂² A₃ + 68 544 A₁⁷ A₂² A₃ - 10 800 A₁⁸ A₂² A₃ + 880 A₁⁹ A₂² A₃ + 1 534 896 A₂³ A₃ -2 170 560 A₁ A₂³ A₃ + 1 705 440 A₁² A₂³ A₃ - 930 240 A₁³ A₂³ A₃ + 371 280 A₁⁴ A₂³ A₃ - 106 624 A₁⁵ A₂³ A₃ + 20160 A⁶₁ A³₂ A₃ - 1920 A⁷₁ A³₂ A₃ - 170544 A⁴₂ A₃ + 232560 A₁ A⁴₂ A₃ - 159120 A²₁ A⁴₂ A₃ + 66 640 A₁³ A₂⁴ A₃ - 16 800 A₁⁴ A₂⁴ A₃ + 2016 A₁⁵ A₂⁴ A₃ + 10 608 A₂⁵ A₃ - 11 424 A₁ A₂⁵ A₃ + 5040 A₁² A₂⁵ A₃ -896 A₁³ A₂⁵ A₃ - 240 A₂⁶ A₃ + 112 A₁ A₂⁶ A₃ + 9 806 280 A₃² - 9 152 528 A₁ A₃² + 5 883 768 A₁² A₃² - $3\,069\,792\,A_1^3\,A_3^2 + 1\,356\,600\,A_1^4\,A_3^2 - 511\,632\,A_1^5\,A_3^2 + 162\,792\,A_1^6\,A_3^2 - 42\,432\,A_1^7\,A_3^2 + 8568\,A_1^8\,A_3^2 - 42\,432\,A_1^7\,A_3^2 + 8568\,A_1^8\,A_3^2 - 42\,432\,A_1^6\,A_3^2 - 42\,A_1^6\,A_3^2 - 42\,A_1^6\,A_3^2 - 42\,A_1^6\,A_3^2 - 42\,A_1^6\,A_3^2 - 42\,A_1^6\,A_1^6\,A_3^2 - 42\,A_1^6\,A_1^6\,A_3^2 - 42\,A_1^6\,A_3^2 - 42\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_1^6\,A_2^6\,A_2^6\,A_1^6\,A_2^6\,A_2^6\,A_2^6\,A_1^6\,A_2^6\,A$ $1200 \text{ A}_{1}^{9} \text{ A}_{3}^{2} + 88 \text{ A}_{1}^{10} \text{ A}_{3}^{2} - 3922512 \text{ A}_{2} \text{ A}_{3}^{2} + 4604688 \text{ A}_{1} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2} \text{ A}_{3}^{2} - 3255840 \text{ A}_{1}^{2} \text{ A}_{2} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{3} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{3} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{3} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} \text{ A}_{2}^{3} + 1705440 \text{ A}_{1}^{3} \text{ A}_{3}^{2} + 1705440 \text{ A}_{1}^{3} + 170640 \text{ A}_{1}^{3} + 170640 \text{ A}_{1}^{3} + 170640 \text{ A}_{1}^{3} +$ 697 680 A₁⁴ A₂ A₃² + 222 768 A₁⁵ A₂ A₃² - 53 312 A₁⁶ A₂ A₃² + 8640 A₁⁷ A₂ A₃² - 720 A₁⁸ A₂ A₃² + 813 960 A₂² A₃² - $1\,023\,264\,A_{1}\,A_{2}^{2}\,A_{3}^{2} + 697\,680\,A_{1}^{2}\,A_{2}^{2}\,A_{3}^{2} - 318\,240\,A_{1}^{3}\,A_{2}^{2}\,A_{3}^{2} + 99\,960\,A_{1}^{4}\,A_{2}^{2}\,A_{3}^{2} - 20\,160\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{2}^{2}\,A_{3}^{2} + 100\,A_{1}^{5}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^{2}\,A_{2}^$ $2016 A_{1}^{6} A_{2}^{2} A_{3}^{2} - 93024 A_{2}^{3} A_{3}^{2} + 106080 A_{1} A_{2}^{3} A_{3}^{2} - 57120 A_{1}^{2} A_{2}^{3} A_{3}^{2} + 16800 A_{1}^{3} A_{2}^{3} A_{3}^{2} - 2240 A_{1}^{4} A_{2}^{3} A_{3}^{2} + 10000 A_{1}^{2} A_{2}^{3} A_{3}^{2} - 2000 A_{1}^{2} A_{2}^{3} - 2000 A$ 155 040 A₁³ A₃³ - 53 040 A₁⁴ A₃³ + 13 328 A₁⁵ A₃³ - 2240 A₁⁶ A₃³ + 192 A₁⁷ A₃³ + 170 544 A₂ A₃³ - 186 048 A₁ A₂ A₃³ +

7200 $A_1^2 A_2^2 A_3^3 + 1120 A_1^3 A_2^2 A_3^3 + 800 A_2^3 A_3^3 - 320 A_1 A_2^3 A_3^3 + 11628 A_3^4 - 10608 A_1 A_3^4 + 4760 A_1^2 A_3^4 - 10608 A_2^2 A_3^4 - 10608 A_1 A_3^4 + 4760 A_1^2 A_3^4 - 10608 A_2^2 A_3^4 - 10608 A_1 A_3^4 + 4760 A_1^2 A_3^4 - 10608 A_2^2 A_3^4 - 10608 A_1 A_3^4 - 10608$ $1200 A_{1}^{3} A_{3}^{4} + 140 A_{1}^{4} A_{3}^{4} - 1904 A_{2} A_{3}^{4} + 1200 A_{1} A_{2} A_{3}^{4} - 240 A_{1}^{2} A_{2} A_{3}^{4} + 40 A_{2}^{2} A_{3}^{4} - 48 A_{3}^{5} + 16 A_{1} A_{3}^{5} - 10 A_{1}^{5} A_{1}^{5} - 10 A_{$ 69 5 3 5 4 4 0 A₄ + 38 6 3 0 8 0 0 A₁ A₄ - 19 6 1 2 5 6 0 A₁² A₄ + 9 1 5 2 5 2 8 A₁³ A₄ - 3 9 2 2 5 1 2 A₁⁴ A₄ + 1 5 3 4 8 9 6 A₁⁵ A₄ -542 640 A_1^6 A_4 + 170 544 A_1^7 A_4 - 46 512 A_1^8 A_4 + 10 608 A_1^9 A_4 - 1904 A_1^{10} A_4 + 240 A_1^{11} A_4 - 16 A_1^{12} A_4 + 1 023 264 A₁⁵ A₂ A₄ + 325 584 A₁⁶ A₂ A₄ - 84 864 A₁⁷ A₂ A₄ + 17 136 A₁⁸ A₂ A₄ - 2400 A₁⁹ A₂ A₄ + $176 A_{1}^{10} A_{2} A_{4} - 3922512 A_{2}^{2} A_{4} + 4604688 A_{1} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{2}^{2} A_{4} + 1705440 A_{1}^{3} A_{2}^{2} A_{4} - 3255840 A_{1}^{2} A_{4} - 3258840 A_{1}^{2} A_{4} - 3255840 A_{1}^{2} A_{4} - 3256840 A_{1}^{2} A_{4} - 326840 A_{1}^{2} A_{4} - 326840 A_{1}^{2} A_{4} - 32640 A_{1}^{2} A_{4} - 326$ $697\,680\,A_1^4\,A_2^2\,A_4 + 222\,768\,A_1^5\,A_2^2\,A_4 - 53\,312\,A_1^6\,A_2^2\,A_4 + 8640\,A_1^7\,A_2^2\,A_4 - 720\,A_1^8\,A_2^2\,A_4 + 542\,640\,A_2^3\,A_4 - 720\,A_1^8\,A_2^2\,A_4 + 720\,A_1^8\,A_2^2\,A_4 + 720\,A_1^8\,A_2^2\,A_4 + 720\,A_1^8\,A_2^2\,A_4 + 720\,A_1^8\,A_2^2\,A_4 + 720\,A_1^8\,A_2^2\,A_4 - 720\,A_1^8\,A_2^2\,A_$ $682\,176\,A_{1}\,A_{2}^{3}\,A_{4}\,+\,465\,120\,A_{1}^{2}\,A_{2}^{3}\,A_{4}\,-\,212\,160\,A_{1}^{3}\,A_{2}^{3}\,A_{4}\,+\,66\,640\,A_{1}^{4}\,A_{2}^{3}\,A_{4}\,-\,13\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,66\,640\,A_{1}^{4}\,A_{2}^{3}\,A_{4}\,-\,13\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}^{3}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,12\,440\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,12\,440\,A_{2}\,A_{2}\,A_{4}\,+\,12\,440\,A_{2}\,A_{2}\,A_{4}\,+\,12\,440\,A_{2}\,A_{2}\,A_{4}\,+\,12\,440\,A_{2}\,A_{2}\,A_{4}\,+\,12\,440\,A_{2}\,A_{2}\,A_{4}\,+\,12\,44\,A_{2}\,A_{2}\,A_{4}\,+\,12\,44\,A_{2}\,A_{2}\,A_{4}\,+\,12\,44\,A_{2}\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{2}\,A_{4}\,+\,12\,A_{4}\,A_{4}\,+\,12\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,A_{4}\,$ 4 604 688 A₁² A₃ A₄ - 2 170 560 A₁³ A₃ A₄ + 852 720 A₁⁴ A₃ A₄ - 279 072 A₁⁵ A₃ A₄ + 74 256 A₁⁶ A₃ A₄ - $15\,232\,A_1^7\,A_3\,A_4\,+\,2160\,A_1^8\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,3\,069\,792\,A_2\,A_3\,A_4\,+\,3\,255\,840\,A_1\,A_2\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_3\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_4\,-\,160\,A_1^9\,A_$ 2 046 528 A₁² A₂ A₃ A₄ + 930 240 A₁³ A₂ A₃ A₄ - 318 240 A₁⁴ A₂ A₃ A₄ + 79 968 A₁⁵ A₂ A₃ A₄ -13440 A₁⁶ A₂ A₃ A₄ + 1152 A₁⁷ A₂ A₃ A₄ + 511 632 A₂² A₃ A₄ - 558 144 A₁ A₂² A₃ A₄ + 318 240 A₁² A₂² A₃ A₄ -114 240 $A_1^3 A_2^2 A_3 A_4 + 25 200 A_1^4 A_2^2 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^2 A_3 A_4 - 42 432 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3^3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3^3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3^3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 - 2688 A_1^5 A_2^3 A_3 A_4 - 42 432 A_3^3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 + 38 080 A_1 A_2^3 A_3 A_4 + 38 080 A_1 A_3^3 A_4 + 38 080 A$ $14\,400\,A_{1}^{2}\,A_{2}^{3}\,A_{3}\,A_{4}\,+\,2240\,A_{1}^{3}\,A_{2}^{3}\,A_{3}\,A_{4}\,+\,1200\,A_{2}^{4}\,A_{3}\,A_{4}\,-\,480\,A_{1}\,A_{2}^{4}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{4}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{4}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{4}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,480\,A_{3}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{3}\,A_{4}\,-\,542\,640\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{3}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,1200\,A_{4}^{2}\,A_{4}\,+\,120\,A_{4}^{2}\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,120\,A_{4}\,+\,12$ $511\,632\,A_{1}\,A_{3}^{2}\,A_{4}\,-\,279\,072\,A_{1}^{2}\,A_{3}^{2}\,A_{4}\,+\,106\,080\,A_{1}^{3}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{3}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{3}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}^{2}\,A_{4}\,-\,28\,560\,A_{1}^{4}\,A_{2}^{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{1}^{5}\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{2}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,A_{4}\,+\,5040\,A_{4}\,$ 448 A₁⁶ A₂² A₄ + 139 536 A₂ A₃² A₄ - 127 296 A₁ A₂ A₃² A₄ + 57 120 A₁² A₂ A₃² A₄ - 14 400 A₁³ A₂ A₃² A₄ + 7616 A₁ A₃³ A₄ + 2400 A₁² A₃³ A₄ - 320 A₁³ A₃³ A₄ - 960 A₂ A₃³ A₄ + 320 A₁ A₂ A₃³ A₄ - 16 A₃⁴ A₄ + 1961 256 A₄² -1 534 896 $A_1 A_a^2$ + 813 960 $A_1^2 A_a^2$ - 341 088 $A_1^3 A_a^2$ + 116 280 $A_1^4 A_a^2$ - 31 824 $A_1^5 A_a^2$ + 6664 $A_1^6 A_a^2$ -960 $A_1^7 A_a^2 + 72 A_1^8 A_a^2 - 542 640 A_2 A_a^2 + 511 632 A_1 A_2 A_a^2 - 279 072 A_1^2 A_2 A_a^2 + 106 080 A_1^3 A_2 A_a^2 - 279 072 A_1^2 A_2 A_1^2 A_2 A_1^2 + 106 080 A_1^3 A_2 A_2^2 - 279 072 A_1^2 A_2 A_1^2 + 106 080 A_1^3 A_2 A_2^2 - 279 072 A_1^2 A_2 A_2 A_2 + 106 080 A_1^3 A_2 A_2 A_2 - 279 072 A_1^2 A_2 A_2 A_2 + 106 080 A_1^3 A_2 A_2 A_2 - 279 072 A_1^2 A_2 A_2 + 279 072 A_1^2 A_1^2 A_2 + 279 072 A_1^2 A_1^2 A_1^2 A_1^2 + 279 072 A_1^2 A_1^2 A_1^2 + 279 072 A_1^2 A_1^2$ 28 560 $A_1^4 A_2 A_a^2$ + 5040 $A_1^5 A_2 A_a^2$ - 448 $A_1^6 A_2 A_a^2$ + 69 768 $A_2^2 A_a^2$ - 63 648 $A_1 A_2^2 A_a^2$ + 28 560 $A_1^2 A_2^2 A_a^2$ - $7200 A_{1}^{3} A_{2}^{2} A_{4}^{2} + 840 A_{1}^{4} A_{2}^{2} A_{4}^{2} - 3808 A_{2}^{3} A_{4}^{2} + 2400 A_{1} A_{2}^{3} A_{4}^{2} - 480 A_{1}^{2} A_{2}^{3} A_{4}^{2} + 40 A_{2}^{4} A_{4}^{2} - 170544 A_{3} A_{4}^{2} + 1000 A_{1}^{2} A_{2}^{2} A_{4}^{2} - 1000 A_{1}^{2} A_{2}^{2} A_{4}^{2} + 1000 A_{1}^{2} A_{2}^{2} + 1000 A_{1}^{2} A_{2}^{2} + 1000 A_{1}^{2} A_{2}^{2} + 1000 A_{1}^{2} A_{2}^{2} + 1000 A_{1}^{2}$ 139 536 A1 A3 A2 - 63 648 A1 A3 A2 + 19 040 A3 A3 A2 - 3600 A4 A3 A2 + 336 A5 A3 A2 + 31 824 A2 A3 A2 -22848 $A_1 A_2 A_3 A_a^2 + 7200 A_1^2 A_2 A_3 A_a^2 - 960 A_1^3 A_2 A_3 A_a^2 - 1440 A_2^2 A_3 A_a^2 + 480 A_1 A_2^2 A_3 A_3^2 + 480 A_1^2 A_3 A_3^2 + 480 A_1^2 A_3 A_3^2 + 480 A_1^2 + 480$ 2856 $A_3^2 A_a^2 - 1440 A_1 A_3^2 A_a^2 + 240 A_1^2 A_3^2 A_a^2 - 96 A_2 A_3^2 A_a^2 - 15504 A_a^3 + 10608 A_1 A_a^3 - 3808 A_1^2 A_a^3 + 10608 A_1 A_a^3 - 3808 A_1^2 A_a^3 + 10608 A_1 A_1^3 - 3808 A_1^2 A_1^3 + 10608 A_1 A_1^3 - 3808 A_1^2 A_1^3 + 10608 A_1 A_1^3 - 3808 A_1^2 - 3808 A_1^2 A_1^3 - 3808 A_1^2 - 3808 A_1^3 - 3808 A_1$ 800 $A_1^3 A_a^3 - 80 A_1^4 A_a^3 + 1904 A_2 A_a^3 - 960 A_1 A_2 A_a^3 + 160 A_1^2 A_2 A_a^3 - 32 A_2^2 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_a^3 + 240 A_3 A_a^3 - 64 A_1 A_3 A_3 - 64 A_1 A_3 - 64 A$ 4 A₄⁴ - 38 630 800 A₅ + 19 612 560 A₁ A₅ - 9152 528 A₁² A₅ + 3 922 512 A₁³ A₅ - 1 534 896 A₁⁴ A₅ + 542 640 $A_1^5 A_5 - 170 544 A_1^6 A_5 + 46 512 A_1^7 A_5 - 10 608 A_1^8 A_5 + 1904 A_1^9 A_5 - 240 A_1^{10} A_5 + 16 A_1^{11} A_5 + 16 A$ 9 152 528 A₂ A₅ - 7 845 024 A₁ A₂ A₅ + 4 604 688 A₁² A₂ A₅ - 2 170 560 A₁³ A₂ A₅ + 852 720 A₁⁴ A₂ A₅ -279 072 A₁⁵ A₂ A₅ + 74 256 A₁⁶ A₂ A₅ - 15 232 A₁⁷ A₂ A₅ + 2160 A₁⁸ A₂ A₅ - 160 A₁⁹ A₂ A₅ - 1534 896 A₂² A₅ + $1\,627\,920\,A_{1}\,A_{2}^{2}\,A_{5}\,-\,1\,023\,264\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,465\,120\,A_{1}^{3}\,A_{2}^{2}\,A_{5}\,-\,159\,120\,A_{1}^{4}\,A_{2}^{2}\,A_{5}\,+\,39\,984\,A_{1}^{5}\,A_{2}^{2}\,A_{5}\,-\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{2}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{1}^{2}\,A_{5}\,+\,100\,A_{$ 6720 A₁⁶ A₂² A₅ + 576 A₁⁷ A₂² A₅ + 170 544 A₂³ A₅ - 186 048 A₁ A₂³ A₅ + 106 080 A₁² A₂³ A₅ - 38 080 A₁³ A₂³ A₅ + 8400 A₁⁴ A₂³ A₅ - 896 A₁⁵ A₂³ A₅ - 10608 A₂⁴ A₅ + 9520 A₁ A₂⁴ A₅ - 3600 A₁² A₂⁴ A₅ + 560 A₁³ A₂⁴ A₅ + 240 A₂⁵ A₅ - 96 A₁ A₂⁵ A₅ + 3 922 512 A₃ A₅ - 3 069 792 A₁ A₃ A₅ + 1 627 920 A₁² A₃ A₅ - 682 176 A₁³ A₃ A₅ + 232 560 A⁴₁ A₃ A₅ - 63 648 A⁵₁ A₃ A₅ + 13 328 A⁶₁ A₃ A₅ - 1920 A⁷₁ A₃ A₅ + 144 A⁸₁ A₃ A₅ - 1085 280 A₂ A₃ A₅ + 1 023 264 A1 A2 A3 A5 - 558 144 A1 A2 A3 A5 + 212 160 A1 A2 A3 A5 - 57 120 A1 A2 A3 A5 + 10 080 A1 A2 A3 A5 -896 A⁶₁ A₂ A₃ A₅ + 139 536 A²₂ A₃ A₅ - 127 296 A₁ A²₂ A₃ A₅ + 57 120 A²₁ A²₂ A₃ A₅ - 14 400 A³₁ A²₂ A₃ A₅ + 1680 A₁⁴ A₂² A₃ A₅ - 7616 A₂³ A₃ A₅ + 4800 A₁ A₂³ A₃ A₅ - 960 A₁² A₂³ A₃ A₅ + 80 A₂⁴ A₃ A₅ - 170 544 A₃² A₅ + $139\,536\,A_{1}\,A_{3}^{2}\,A_{5}\,-\,63\,648\,A_{1}^{2}\,A_{3}^{2}\,A_{5}\,+\,19\,040\,A_{1}^{3}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{3}^{2}\,A_{5}\,+\,31\,824\,A_{2}\,A_{3}^{2}\,A_{5}\,-\,3600\,A_{1}^{4}\,A_{3}^{2}\,A_{5}\,+\,336\,A_{1}^{5}\,A_{5}\,A_{5}\,+\,34\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,A_{5}\,$ 22 848 A1 A2 A3 A5 + 7200 A1 A2 A3 A5 - 960 A1 A2 A3 A5 - 1440 A2 A3 A5 + 480 A1 A2 A3 A5 + 1904 A3 A5 -960 A1 A3 A5 + 160 A1 A3 A5 - 64 A2 A3 A5 + 1 534 896 A4 A5 - 1 085 280 A1 A4 A5 + 511 632 A1 A4 A5 -186 048 A₁³ A₄ A₅ + 53 040 A₁⁴ A₄ A₅ - 11 424 A₁⁵ A₄ A₅ + 1680 A₁⁶ A₄ A₅ - 128 A₁⁷ A₄ A₅ - 341 088 A₂ A₄ A₅ + 279 072 A1 A2 A4 A5 - 127 296 A1 A2 A4 A5 + 38 080 A1 A2 A4 A5 - 7200 A1 A2 A4 A5 + 672 A1 A2 A4 A5 +

31 824 A₂² A₄ A₅ - 22 848 A₁ A₂² A₄ A₅ + 7200 A₁² A₂² A₄ A₅ - 960 A₁³ A₂² A₄ A₅ - 960 A₂³ A₄ A₅ + 320 A1 A2 A4 A5 - 93 024 A3 A4 A5 + 63 648 A1 A3 A4 A5 - 22 848 A1 A3 A4 A5 + 4800 A1 A3 A4 A5 -480 A⁴₁ A₃ A₄ A₅ + 11 424 A₂ A₃ A₄ A₅ - 5760 A₁ A₂ A₃ A₄ A₅ + 960 A²₁ A₂ A₃ A₄ A₅ - 192 A²₂ A₃ A₄ A₅ + $720 A_3^2 A_4 A_5 - 192 A_1 A_3^2 A_4 A_5 - 10608 A_4^2 A_5 + 5712 A_1 A_4^2 A_5 - 1440 A_1^2 A_4^2 A_5 + 160 A_1^3 A_4^2 + 160 A_$ 720 $A_2 A_a^2 A_5 - 192 A_1 A_2 A_a^2 A_5 + 48 A_3 A_a^2 A_5 + 271 320 A_5^2 - 170 544 A_1 A_5^2 + 69 768 A_1^2 A_5^2 - 21 216 A_1^3 A_5^2 + 21 216 A_1^3$ $4760 A_{1}^{4} A_{5}^{2} - 720 A_{1}^{5} A_{5}^{2} + 56 A_{1}^{6} A_{5}^{2} - 46512 A_{2} A_{5}^{2} + 31824 A_{1} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11424 A_{1}^{2} A_{2} A_{5}^{2} + 2400 A_{1}^{3} A_{2} A_{5}^{2} - 11444 A_{1}^{2} A_{2} A_{5}^{2} + 11444 A_{1}^{2} A_{2} A_{2}^{2} + 11444 A_{1}^{2} A_{2} A_{2}^{2} + 11444 A_{1}^{2} A_{2}$ 240 $A_1^4 A_2 A_5^2 + 2856 A_2^2 A_5^2 - 1440 A_1 A_2^2 A_5^2 + 240 A_1^2 A_2^2 A_5^2 - 32 A_2^3 A_5^2 - 10608 A_3 A_5^2 + 5712 A_1 A_3 A_5^2 - 32 A_2^2 A_5^2 - 32 A_2^3 A_5^2 - 10608 A_3 A_5^2 + 5712 A_1 A_3 A_5^2 - 32 A_2^2 A_5^2 - 32 A_2^3 A_5^2 - 32 A_2^3$ 1440 $A_1^2 A_3 A_5^2 + 160 A_1^3 A_3 A_5^2 + 720 A_2 A_3 A_5^2 - 192 A_1 A_2 A_3 A_5^2 + 24 A_3^2 A_5^2 - 1904 A_4 A_5^2 + 720 A_1 A_4 A_5^2 - 1904 A_5 A_5 - 1904 A_5 A_5 - 1904 A_5 - 1904 A_$ 96 A₁² A₄ A₅² + 48 A₂ A₄ A₅² - 80 A₅³ + 16 A₁ A₅³ - 19 612 560 A₆ + 9 152 528 A₁ A₆ - 3 922 512 A₁² A₆ + 1 534 896 A₁³ A₆ - 542 640 A₁⁴ A₆ + 170 544 A₁⁵ A₆ - 46 512 A₁⁶ A₆ + 10 608 A₁⁷ A₆ - 1904 A₁⁸ A₆ + 240 A⁹₁ A₆ - 16 A¹⁰₁ A₆ + 3 922 512 A₂ A₆ - 3 069 792 A₁ A₂ A₆ + 1 627 920 A²₁ A₂ A₆ - 682 176 A³₁ A₂ A₆ + 232 560 A₁⁴ A₂ A₆ - 63 648 A₁⁵ A₂ A₆ + 13 328 A₁⁶ A₂ A₆ - 1920 A₁⁷ A₂ A₆ + 144 A₁⁸ A₂ A₆ - 542 640 A₂² A₆ + 511 632 A1 A2 A6 - 279 072 A1 A2 A6 + 106 080 A1 A2 A6 - 28 560 A1 A2 A6 + 5040 A1 A2 A6 -448 $A_1^6 A_2^2 A_6 + 46512 A_2^3 A_6 - 42432 A_1 A_2^3 A_6 + 19040 A_1^2 A_2^3 A_6 - 4800 A_1^3 A_2^3 A_6 + 560 A_1^4 A_2^3 A_6 - 4200 A_1^3 A_2^3 A_6 + 560 A_1^4 A_2^3 A_6 - 4000 A_1^3 A_2^3 A_6 + 5000 A_1^3 A_2^3 A_6 - 4000 A_1^3 A_2^3 A_6 + 5000 A_1^3 A_2^3 A_6 - 4000 A_1^3 A_2^3 A_2 - 4000 A_1^3 A_2 - 4000 A_1^3$ 1904 $A_2^4 A_6 + 1200 A_1 A_2^4 A_6 - 240 A_1^2 A_2^4 A_6 + 16 A_2^5 A_6 + 1534896 A_3 A_6 - 1085280 A_1 A_3 A_6 + 1085280 A_1 A_2 A_2 + 1085280 A_1 A_2 + 1085280 A_1 A_2 + 1085280 A_1 A_2 + 1085280 A_1 A_2 + 1085280 A$ 511 632 A₁² A₃ A₆ - 186 048 A₁³ A₃ A₆ + 53 040 A₁⁴ A₃ A₆ - 11 424 A₁⁵ A₃ A₆ + 1680 A₁⁶ A₃ A₆ -128 A₁⁷ A₃ A₆ - 341 088 A₂ A₃ A₆ + 279 072 A₁ A₂ A₃ A₆ - 127 296 A₁² A₂ A₃ A₆ + 38 080 A₁³ A₂ A₃ A₆ -7200 $A_1^4 A_2 A_3 A_6 + 672 A_1^5 A_2 A_3 A_6 + 31824 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 22848 A_1 A_2^2 A_3 A_6 + 7200 A_1^2 A_2^2 A_3 A_6 - 7200 A_1^2 A_2^2 A_3 A_4 - 7200 A_1^$ 960 A₁³ A₂² A₃ A₆ - 960 A₂³ A₃ A₆ + 320 A₁ A₂³ A₃ A₆ - 46 512 A₃² A₆ + 31 824 A₁ A₃² A₆ - 11 424 A₁² A₃² A₆ + 2400 A₁³ A₃² A₆ - 240 A₁⁴ A₃² A₆ + 5712 A₂ A₃² A₆ - 2880 A₁ A₂ A₃² A₆ + 480 A₁² A₂ A₃² A₆ - 96 A₂² A₃² A₆ + 240 A₃³ A₆ - 64 A₁ A₃³ A₆ + 542 640 A₄ A₆ - 341 088 A₁ A₄ A₆ + 139 536 A₁² A₄ A₆ - 42 432 A₁³ A₄ A₆ + 9520 A₁⁴ A₄ A₆ - 1440 A₁⁵ A₄ A₆ + 112 A₁⁶ A₄ A₆ - 93024 A₂ A₄ A₆ + 63648 A₁ A₂ A₄ A₆ - 22848 A₁² A₂ A₄ A₆ + 4800 A₁³ A₂ A₄ A₆ - 480 A₁⁴ A₂ A₄ A₆ + 5712 A₂² A₄ A₆ - 2880 A₁ A₂² A₄ A₆ + 480 A₁² A₂² A₄ A₆ - 64 A₂³ A₄ A₆ -21 216 A₃ A₄ A₆ + 11 424 A₁ A₃ A₄ A₆ - 2880 A₁² A₃ A₄ A₆ + 320 A₁³ A₃ A₄ A₆ + 1440 A₂ A₃ A₄ A₆ -384 A₁ A₂ A₃ A₄ A₆ + 48 A₃² A₄ A₆ - 1904 A₄² A₆ + 720 A₁ A₄² A₆ - 96 A₁² A₄² A₆ + 48 A₂ A₄² A₆ + 170544 A₅ A₆ -93 024 A1 A5 A6 + 31 824 A1 A5 A6 - 7616 A1 A5 A6 + 1200 A1 A5 A6 - 96 A1 A5 A6 - 21 216 A2 A5 A6 + 11 424 A1 A2 A5 A6 - 2880 A1 A2 A5 A6 + 320 A1 A2 A5 A6 + 720 A2 A5 A6 - 192 A1 A2 A5 A6 -3808 A3 A5 A6 + 1440 A1 A3 A5 A6 - 192 A1 A3 A5 A6 + 96 A2 A3 A5 A6 - 480 A4 A5 A6 + 96 A1 A4 A5 A6 - $16 A_5^2 A_6 + 23 256 A_6^2 - 10608 A_1 A_6^2 + 2856 A_1^2 A_6^2 - 480 A_1^3 A_6^2 + 40 A_1^4 A_6^2 - 1904 A_2 A_6^2 + 720 A_1 A_2 A_6^2 - 1000 A_1 A_2 A_2 A_2 A_2 - 1000 A_1 A_2 A_2 A_2 - 1000 A_$ 96 A₁² A₂ A₆² + 24 A₂² A₆² - 240 A₃ A₆² + 48 A₁ A₃ A₆² - 16 A₄ A₆² - 9 152 528 A₇ + 3 922 512 A₁ A₇ -1 534 896 A₁² A₇ + 542 640 A₁³ A₇ - 170 544 A₁⁴ A₇ + 46 512 A₁⁵ A₇ - 10 608 A₁⁶ A₇ + 1904 A₁⁷ A₇ -240 A₁⁸ A₇ + 16 A₁⁹ A₇ + 1 534 896 A₂ A₇ - 1 085 280 A₁ A₂ A₇ + 511 632 A₁² A₂ A₇ - 186 048 A₁³ A₂ A₇ + 53 040 A⁴₁ A₂ A₇ - 11 424 A⁵₁ A₂ A₇ + 1680 A⁶₁ A₂ A₇ - 128 A⁷₁ A₂ A₇ - 170 544 A²₂ A₇ + 139 536 A₁ A²₂ A₇ -63 648 A₁² A₂² A₇ + 19 040 A₁³ A₂² A₇ - 3600 A₁⁴ A₂² A₇ + 336 A₁⁵ A₂² A₇ + 10 608 A₂³ A₇ - 7616 A₁ A₂³ A₇ + $2400 \ A_1^2 \ A_2^3 \ A_7 \ - \ 320 \ A_1^3 \ A_2^3 \ A_7 \ - \ 240 \ A_2^4 \ A_7 \ + \ 80 \ A_1 \ A_2^4 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 542 \ 640 \ A_3 \ A_7 \ - \ 341 \ 088 \ A_1 \ A_3 \ A_7 \ + \ 341 \ A_7 \$ 139 536 A₁² A₃ A₇ - 42 432 A₁³ A₃ A₇ + 9520 A₁⁴ A₃ A₇ - 1440 A₁⁵ A₃ A₇ + 112 A₁⁶ A₃ A₇ - 93 024 A₂ A₃ A₇ + 63 648 A₁ A₂ A₃ A₇ - 22 848 A₁² A₂ A₃ A₇ + 4800 A₁³ A₂ A₃ A₇ - 480 A₁⁴ A₂ A₃ A₇ + 5712 A₂² A₃ A₇ -2880 A1 A2 A3 A7 + 480 A1 A2 A3 A7 - 64 A2 A3 A7 - 10608 A3 A7 + 5712 A1 A3 A7 - 1440 A1 A3 A7 + $160\,A_1^3\,A_3^2\,A_7 + 720\,A_2\,A_3^2\,A_7 - 192\,A_1\,A_2\,A_3^2\,A_7 + 16\,A_3^3\,A_7 + 170\,544\,A_4\,A_7 - 93\,024\,A_1\,A_4\,A_7 + 100\,A_1^2\,A_2^2\,A_3^2\,A_7 + 100\,A_3^2\,A_7 + 100\,A_3^2\,A_7 + 100\,A_4\,A_7 + 10$ 31 824 A₁² A₄ A₇ - 7616 A₁³ A₄ A₇ + 1200 A₁⁴ A₄ A₇ - 96 A₁⁵ A₄ A₇ - 21 216 A₂ A₄ A₇ + 11 424 A₁ A₂ A₄ A₇ -2880 A₁² A₂ A₄ A₇ + 320 A₁³ A₂ A₄ A₇ + 720 A₂² A₄ A₇ - 192 A₁ A₂² A₄ A₇ - 3808 A₃ A₄ A₇ + 1440 A₁ A₃ A₄ A₇ -192 A₁² A₃ A₄ A₇ + 96 A₂ A₃ A₄ A₇ - 240 A₄² A₇ + 48 A₁ A₄² A₇ + 46 512 A₅ A₇ - 21 216 A₁ A₅ A₇ + 5712 A₁² A₅ A₇ - 960 A₁³ A₅ A₇ + 80 A₁⁴ A₅ A₇ - 3808 A₂ A₅ A₇ + 1440 A₁ A₂ A₅ A₇ - 192 A₁² A₂ A₅ A₇ + 48 A₂² A₅ A₇ - 480 A₃ A₅ A₇ + 96 A₁ A₃ A₅ A₇ - 32 A₄ A₅ A₇ + 10608 A₆ A₇ - 3808 A₁ A₆ A₇ + 720 A₁² A₆ A₇ - $64 A_1^3 A_6 A_7 - 480 A_2 A_6 A_7 + 96 A_1 A_2 A_6 A_7 - 32 A_3 A_6 A_7 + 952 A_7^2 - 240 A_1 A_7^2 + 24 A_1^2 A_7^2 - 16 A_2 A_7^2 - 16 A_7^$ 3 922 512 A₈ + 1 534 896 A₁ A₈ - 542 640 A₁² A₈ + 170 544 A₁³ A₈ - 46 512 A₁⁴ A₈ + 10 608 A₁⁵ A₈ -

1904 A₁⁶ A₈ + 240 A₁⁷ A₈ - 16 A₁⁸ A₈ + 542 640 A₂ A₈ - 341 088 A₁ A₂ A₈ + 139 536 A₁² A₂ A₈ -42 432 A₁³ A₂ A₈ + 9520 A₁⁴ A₂ A₈ - 1440 A₁⁵ A₂ A₈ + 112 A₁⁶ A₂ A₈ - 46 512 A₂² A₈ + 31 824 A₁ A₂² A₈ - $11424 A_1^2 A_2^2 A_8 + 2400 A_1^3 A_2^2 A_8 - 240 A_1^4 A_2^2 A_8 + 1904 A_2^3 A_8 - 960 A_1 A_2^3 A_8 + 160 A_1^2 A_2^3 A_8 - 960 A_1 A_2^3 A_8 + 160 A_1^2 A_2^3 A_8 - 960 A_1 A_2^3 A_8 - 960 A_1^3 A_2^3 A_8 - 960 A_1^3 A_2^3 A_8 - 960 A_1^3 A_2^3 A_8 - 960 A_1^$ 16 A₂⁴ A₈ + 170544 A₃ A₈ - 93024 A₁ A₃ A₈ + 31824 A₁² A₃ A₈ - 7616 A₁³ A₃ A₈ + 1200 A₁⁴ A₃ A₈ -96 A₁⁵ A₃ A₈ - 21 216 A₂ A₃ A₈ + 11 424 A₁ A₂ A₃ A₈ - 2880 A₁² A₂ A₃ A₈ + 320 A₁³ A₂ A₃ A₈ + 720 A₂² A₃ A₈ -5712 A₁² A₄ A₈ - 960 A₁³ A₄ A₈ + 80 A₁⁴ A₄ A₈ - 3808 A₂ A₄ A₈ + 1440 A₁ A₂ A₄ A₈ - 192 A₁² A₂ A₄ A₈ + 48 A₂² A₄ A₈ - 480 A₃ A₄ A₈ + 96 A₁ A₃ A₄ A₈ - 16 A₄² A₈ + 10 608 A₅ A₈ - 3808 A₁ A₅ A₈ + 720 A₁² A₅ A₈ -64 A₁³ A₅ A₈ - 480 A₂ A₅ A₈ + 96 A₁ A₂ A₅ A₈ - 32 A₃ A₅ A₈ + 1904 A₆ A₈ - 480 A₁ A₆ A₈ + 48 A₁² A₆ A₈ -46 512 A₁³ A₉ - 10 608 A₁⁴ A₉ + 1904 A₁⁵ A₉ - 240 A₁⁶ A₉ + 16 A₁⁷ A₉ + 170 544 A₂ A₉ - 93 024 A₁ A₂ A₉ + $31824 A_1^2 A_2 A_9 - 7616 A_1^3 A_2 A_9 + 1200 A_1^4 A_2 A_9 - 96 A_1^5 A_2 A_9 - 10608 A_2^2 A_9 + 5712 A_1 A_2^2 A_9 - 10608 A_2^2 A_9 - 10608 A_2^2 A_9 + 5712 A_1 A_2^2 A_9 - 10608 A_2^2 A_9 - 10608 A_2^2 A_9 + 5712 A_1 A_2^2 A_9 - 10608 A_2^2 A_9 + 5712 A_1 A_2^2 A_9 - 10608 A_2^2 A_9 + 5712 A_1 A_2^2 A_9 - 10608 A_2^2 A_9 - 10608 A_2^2 A_9 + 10608 A_2^2 A_9 - 10608 A_2^2 A_$ 1440 $A_1^2 A_2^2 A_9 + 160 A_1^3 A_2^2 A_9 + 240 A_2^3 A_9 - 64 A_1 A_2^3 A_9 + 46512 A_3 A_9 - 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_3 A_9 + 46512 A_3 A_9 + 21216 A_1 A_$ 5712 A₁² A₃ A₉ - 960 A₁³ A₃ A₉ + 80 A₁⁴ A₃ A₉ - 3808 A₂ A₃ A₉ + 1440 A₁ A₂ A₃ A₉ - 192 A₁² A₂ A₃ A₉ + $48 A_2^2 A_3 A_9 - 240 A_3^2 A_9 + 48 A_1 A_3^2 A_9 + 10608 A_4 A_9 - 3808 A_1 A_4 A_9 + 720 A_1^2 A_4 A_9 - 64 A_1^3 A_4 A_1 A_1^3 A_1 A_1^3$ 480 A₂ A₄ A₉ + 96 A₁ A₂ A₄ A₉ - 32 A₃ A₄ A₉ + 1904 A₅ A₉ - 480 A₁ A₅ A₉ + 48 A₁² A₅ A₉ - 32 A₂ A₅ A₉ + 240 A₆ A₉ - 32 A₁ A₆ A₉ + 16 A₇ A₉ - 542 640 A₁₀ + 170 544 A₁ A₁₀ - 46 512 A₁² A₁₀ + 10 608 A₁³ A₁₀ -1904 A₁⁴ A₁₀ + 240 A₁⁵ A₁₀ - 16 A₁⁶ A₁₀ + 46 512 A₂ A₁₀ - 21 216 A₁ A₂ A₁₀ + 5712 A₁² A₂ A₁₀ - $960 A_{1}^{3} A_{2} A_{10} + 80 A_{1}^{4} A_{2} A_{10} - 1904 A_{2}^{2} A_{10} + 720 A_{1} A_{2}^{2} A_{10} - 96 A_{1}^{2} A_{2}^{2} A_{10} + 16 A_{2}^{3} A_{10} + 10608 A_{3} A_{10} - 96 A_{1}^{2} A_{10}^{2} A_{10} + 10608 A_{10}^{2} A_{10} - 96 A_{10}^{2} A_{10}^{2} A_{10} + 10608 A_{10}^{2} A_{10}^{2} - 96 A_{10}^{2} A_{10}^{2} A_{10}^{2} + 10608 A_{10}^{2} A_{10}^{2} - 96 A_{10}^{2} A_{10}^{2} A_{10}^{2} + 10608 A_{10}^{2} A_{10}^{2} - 96 A_{10}^{2} A_{10}^{2} - 96 A_{10}^{2} A_{10}^{2} + 10608 A_{10}^{2} A_{10}^{2} - 96 A_{10}^{2$ 3808 A₁ A₃ A₁₀ + 720 A₁² A₃ A₁₀ - 64 A₁³ A₃ A₁₀ - 480 A₂ A₃ A₁₀ + 96 A₁ A₂ A₃ A₁₀ - 16 A₃² A₁₀ + 1904 $A_4 A_{10} - 480 A_1 A_4 A_{10} + 48 A_1^2 A_4 A_{10} - 32 A_2 A_4 A_{10} + 240 A_5 A_{10} - 32 A_1 A_5 A_{10} + 16 A_6 A_{10} - 32 A_1 A_2 A_2 A_2 A_2 A_3 A_{10} + 240 A_2 A_{10} - 32 A_1 A_2 A_{10} + 16 A_2 A_{10} - 32 A_2 A_2 A_3 A_{10} + 240 A_2 A_{10} - 32 A_1 A_2 A_{10} + 16 A_2 A_{10} - 32 A_2 A_2 A_3 A_{10} - 32 A_2 A_{10} - 32 A_2 A_{10} - 32 A_{10} - 32 A_{10} A_{10} - 32 A_{10} - 32$ 170 544 A₁₁ + 46 512 A₁ A₁₁ - 10 608 A₁² A₁₁ + 1904 A₁³ A₁₁ - 240 A₁⁴ A₁₁ + 16 A₁⁵ A₁₁ + 10 608 A₂ A₁₁ -3808 A1 A2 A11 + 720 A1 A2 A11 - 64 A1 A2 A11 - 240 A2 A11 + 48 A1 A2 A11 + 1904 A3 A11 - 480 A1 A3 A11 + 48 A₁² A₃ A₁₁ - 32 A₂ A₃ A₁₁ + 240 A₄ A₁₁ - 32 A₁ A₄ A₁₁ + 16 A₅ A₁₁ - 46 512 A₁₂ + 10 608 A₁ A₁₂ -1904 $A_1^2 A_{12} + 240 A_1^3 A_{12} - 16 A_1^4 A_{12} + 1904 A_2 A_{12} - 480 A_1 A_2 A_{12} + 48 A_1^2 A_2 A_{12} - 16 A_2^2 A_{12} + 120 A_1^2 A_{12} + 120 A_1^$ 240 A₃ A₁₂ - 32 A₁ A₃ A₁₂ + 16 A₄ A₁₂ - 10 608 A₁₃ + 1904 A₁ A₁₃ - 240 A₁² A₁₃ + 16 A₁³ A₁₃ + 240 A₂ A₁₃ -32 A₁ A₂ A₁₃ + 16 A₃ A₁₃ - 1904 A₁₄ + 240 A₁ A₁₄ - 16 A₁² A₁₄ + 16 A₂ A₁₄ - 240 A₁₅ + 16 A₁ A₁₅ - 16 A₁₆

SetPrecision[f16[30000], 105]

 $\begin{array}{l} \textbf{1.52095375313428790416691125096776570270017381985973087702928876918849076318838048230} \\ \textbf{44671528194807135528} \times \textbf{10}^{-37} \end{array}$

SetPrecision[g16, 150]

- $\begin{array}{l} \textbf{1.52095375313428790416691125096776570270017381985973087702928876918849076318838048230} \\ \textbf{44671528194807135606} \times \textbf{10}^{-37} \end{array}$
- $1.52095375313428790416691125096776570270017381985973087702928876918849076318838048230 \times 4467152819480713552776152151427781`103.64525271013926*^{-37}/$
- 1.5209537531342879041669112509677657027001738198597308770292887691884907631883804823 04467152819480713560634755589948988`103.84156841793063*^-37

1 - %

 $\textbf{5.2}\times\textbf{10}^{-102}$

That is, the sum of the 16 th powers of 30,000 zeros on the critical line is 101 nines (101N) of the theoretical value. Therefore, the probability that the Riemann Hypothesis is false is less than 10^{-101} .

For reference, on my computer (Intel Core i7-9750H, 16GB), it took 3.5 hours to calculate f_{16} (30000) and 2 seconds to calculate g_{16} .

The precision of the calculation appears to increase by 6.3 digits as the degree increases by one. That is, the degree of exponent and the precision of the calculation are roughly proportional. If so, may be 10^{-1000} at the 160 th degree and 10^{-10000} at the 1600 th degree. Such calculations are possible using the formulas presented in this chapter. Therefore, the probability that the Riemann Hypothesis is false is very close to zero.

2025.01.29

Kano Kono Hiroshima, Japan

Alien's Mathematics