
Summary of Dirichlet Beta Function

1 Dirichlet Beta Generating Functions
 sech x , sec x and csc x  can be expanded to Fourier series and Taylor series.  And  if the termwise higher order integration 

of these is carried out, Dirichlet Beta  at a natural number are obtained. 

  Where, these are automorphisms which are expressed by lower betas. However, in this chapter, we stop those so far. 

The work that obtain the non-automorphism formulas by removing lower betas from these is done in the next chapter

" 2 Formulas for Dirichlet Beta " .

  In this chapter, we obtain the following polynomials from the beta generating functions of each family of  sech, sec and csc . 

Where, Dirichlet Beta and Dirichlet Lambda are as follows.
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Bernoulli numbers and Euler numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,
E0=1,  E2=-1,    E4=5,       E6=-61,    E8=1385,  
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  Furthermore, if the termwise higher order differentiation of the Fourier series of each family of sech and sec are carried out,
the following expressions are obtained.
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Where,  nKr  is a kind of Eulderian Number and is defined as follows.
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2 Formulas for Dirichlet Beta
  Here, removing the lower betas from the the automorphism formulas in the previous chapter,  we obtain the following 
non-automorphism formulas. Where, Bernoulli numbers and Euler numbers are as follows.

B0=1,  B2=1/6,  B4=-1/30,  B6=1/42,  B8=-1/30,

E0=1,  E2=-1,    E4=5,       E6=-61,    E8=1385,  
And, gamma function and incomplete gamma function were as follows.
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2.1 Formulas for Beta at natural number

For 0< x  /2 ,
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2.2 Formulas for Beta at even number

For 0< x  /2 ,
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2.3 Formulas for Beta at odd number

For 0< x  /2 ,
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2.4 Formulas for Beta at complex number

  When p is a complex number such that p1,0,-1,-2, ,

For x =u+v i   s.t.  0< | |x  2  , u0 ,
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3 Global definition of Dirichlet Beta and Generalized Euler Number
  Diriclet beta function is defined on the whole complex plane with patches as follows.
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This is inconvenient. so, we focus on the following sequence.

 nBr  = Σ
s=0

r

( )-1 r-sＣr s  s-
2
1 n

r=0,1,2,,n

Using this sequence, we can define Diriclet beta function on the whole complex plane as follows.

Definition 3.2.1
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  Furthermore, by using this sequence, Euler Number can be defined on the whole complex plane.

Definition 3.3.1
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4 Completed Dirichlet Beta
  In 4.1,  symmetric functional equations are derived from functional equations.

Formula 4.1.1
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In 4.2,  we define the completed Dirichlet beta functions ( )z , ( )z  as follows, respectively.
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Then, Formula 4.1.1 is expressed as follows.
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From the latter, we can see that ( )z  is an even function.  Therefore, ( )z  has the same properties as completed

Riemann zeta function ( )z . ( See " 07 Completed Riemann Zeta ". )  And, as in ( )z ,  the following theorem holds.

Theorem 4.2.1

If Dirichlet beta function ( )z has a non-trivial zero whose real part is not 1/2 , the one set consists of

the following four.

1/2+1  i1 , 1/2-1  i1 ( 0 < 1 < 1/2 )

05 Factorization of Completed Dirichlet Beta
  In 5.1,  the following Hadamard product is derived.

Formula 5.1.1
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  In 5.2,  we consider how the formulas in the previous section are expressed  when non-trivial zeros whose real part is 1/2

and non-trivial zeros whose real part is not 1/2  are mixed. Then, we obtain the following theorems.

Theorem 5.2.2

  Let   be Euler-Mascheroni constant, non-trivial zeros of Dirichlet beta function are xn+ i yn    n =1,2,3, . 

Among them, zeros whose real part is 1/2 are 1/2 i yr   r =1,2,3,  and zeros whose real parts is not 1/2

are 1/2s  is   0 < s < 1/2    s =1,2,3, .  Then the following expressions hold.
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Formula 5.2.3 ( Special values )

  When non-trivial zeros of Dirichlet beta function are xk  i yk   k =1,2,3, , the following expressions hold.
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Theorem 5.2.4

  Let non-trivial zeros of  Dirichlet beta function are xn+ i yn    n =1,2,3,  and    be Euler-Mascheroni constant.

If the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.
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Incidentally, when this was calculated using 10000 yr , both sides coincided with the decimal point 3 digits.

  In 5.3,  we show that ( )z  is factored completely.

Theorem 5.3.1 ( Factorization of ( )z )

  Let Dirichlet beta function be ( )z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed beta function

be as follows.
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  In 5.4,  we first derive the factorization of ( )z .
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Theorem 5.4.1 ( Factorization of ( )z )

  Let Dirichlet beta function be ( )z , the non-trivial zeros are zn = xn  i yn   n =1,2,3,  and completed beta function

be as follows.
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Then, ( )z  is factorized as follows.
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And, using this theorem and Theorem 4.2.1 in the previous section,  we obtaine the following theorem.

Theorem 5.4.4

  When Dirichlet beta function is ( )z  and the non-trivial zeros are zn = xn  iyn   n =1,2,3, ,

If  the following expression holds,  non-trivial zeros whose real parts is not 1/2  do not exist.
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Incidentally, when this was calculated using 10000 yr , both sides coincided with the decimal point 4 digits.

06 Zeros on the Critical Line of Dirichlet Beta

  In 6.1,  substituting z =0+iy  for the completed Dirichlet beta( )z ,
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We use this to calculate the zeros on the critical line. However, this function is too small in absolute value and can only find 

the zeros up to y =917 .

  So we normalize h( )y  and define the following sign function.
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Using this sign function sgn( )y , we can find the zeros at large y . 
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  In 6.2,  multiplying this sign function sgn( )y by the absolute value of the Dirichlet beta ( )1/2+i y ,  we obtain a

smooth function B( )y .
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 Using this B( )y function,  we can find the zeros on the critical line of ( )z  by the intersection of the curve and the y -axis

  In 6.3,  first, a lemma is prepared.

Lemma

  When f( )z is a complex function defined on the domain D ,  the following expression holds.
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Applying this lemma to the gamma function in the 6.2 ,
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From this,  we obtain
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This is Riemann-Siegel style B function . 

07 Absolute Value of Dirichlet Beta Function
  In 7.1,  Dirichlet Beta Function is observed. It is illustrated that there is no singularity and that there are non-trivial zeros

in the critical strip. 

  In 7.2,  the properties of the square of the absolute value of Dirichlet Beta Function  ( )x ,y
2

 are investigated. Then,

the interval 0  x  1/2  is particularly noted, and the following hypothesis equivalent to Riemann hypothesis is presented.

Hypothesis 7.2.1

 When ( )x ,y is the Dirichlet Beta function on the complex plane,  the squared absolute value ( )x,y 2
 is a

monotonically decreasing function in the region 0 <  x < 1/2 ,  y  2 .
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The figures of section in x =0 , 1/4 , 1/2  are drawn as follows.

 

  In 7.3,  the square of the absolute value of Dirichlet Beta Function is expressed by a double series.

Formula 7.3.2

  When ( )x ,y is the Dirichlet Beta Function,

 ( )x ,y 2 = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

And using this, Hypothesis 7.2.1 is represented as follows. 

Hypothesis 7.3.3

  When ( )x ,y is the Dirichlet Beta function on the complex plane, the following inequality holds.

 ( )x,y 2 =Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

 > 0    for   
0 <  x < 1/2
y  2         

  In 7.4,  the properties at the zero of the square of the absolute value of Dirichlet Beta Function are stated as theorems. 

Theorem 7.4.0

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,

Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

cos b log
2r-1
2s-1

 = 0

Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

sin b log
2r-1
2s-1

 = 0

  Interestingly, at a zero point ( )a ,b of  , each of these rows have to be all 0 .

Theorem 7.4.1

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,

Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

cos b log
2r-1
2s-1

 = 0 for  r =1,2,3,

Σ
s=1



 ( )2r -1 ( )2s -1 a

( )-1 r+s

sin b log
2r-1
2s-1

 = 0 for  r =1,2,3,

  From this,  the following important corollary is obtained.

Corollary 7.4.1"

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,  the following expressions hold for arbitrary real number  .

Σ
s=1



( )2s -1 a

( )-1 s

cos b log( )2s -1 +   = 0
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Σ
s=1



( )2s -1 a

( )-1 s

sin b log( )2s -1 +   = 0

  In 7.5,  the partial derivatives of the square of the absolute value are calculated. 

Formula 7.5.1
  When squared absolute value of Dirichlet beta function is

f( )x ,y = Σ
r=1



Σ
s=1



 ( )2r -1 ( )2s -1 x

( )-1 r+s

cos y log
2r-1
2s-1

    =  ( )x ,y 2

The 1st order partial derivatives are givern as follows.

fx = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

fy =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
sin y log

2r-1
2s-1

  Then, the necessary conditions for the square of the absolute value to be 0 are shown. 

Theorem 7.5.2 ( Stationary Condition )

  When ( )x ,y is Dirichlet Beta Function,  if ( )a ,b = 0 ,  the following expressions hold .

fx a ,b  = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

log( )2r -1
cos b log

2r-1
2s-1

 = 0

fy a ,b  =   2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 a

log( )2r -1
sin b log

2r-1
2s-1

 = 0

  Last,  using Formula 7.5.1 ,  a hypothesis equivalent to Riemann hypothesis is presented.

Hypothesis 7.5.5

  When ( )x ,y is the Dirichlet Beta function on the complex plane, the following inequality holds.

  fx = -2Σ
r=1



Σ
s=1


( )-1 r+s

 ( )2r -1 ( )2s -1 x

log( )2r -1
cos y log

2r-1
2s-1

 < 0   for  
0 <  x < 1/2
y  2         

  this is illustrated as follows. Blue is fx  1/2 , y , orange is fx  1/4 , y , green is fx  0 , y  and the red points are

zeros on the critical line x =1/2 .  Other than the blue line are not in contact with the y-axis.

 

Graphical Proof of the Riemann Hypothesis for the Dirichlet Beta
  This proof is difficult to contain in one chapter, so I write it as a separate paper.

  In Chapter 1,  the definitions of the Dirichlet beta function ( )z and what are known so far are explained.
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Dirichle Beta Function

  Dirichle Beta Function ( )z  is defined by the following Dirichlet series.

( )z  = Σ
r=1


e-z log( )2r-1  = 

1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re( )z  > 1 (1.  )

  This function is analytically continued to Re( )z  < 1 ,  and  has trivial zeros z = -(2n -1)   ( n = 1, 2, 3 ,  )

and non-trivial zeros z = 1/2  bn  ( )n =1,2,3, .  So, it is the Riemann hypothesis for the Dirichlet Beta Function 

that there will be no non-trivial zeros other than these.   In addition, it is known that non-trivial zeros exist only in the critical

strip 0 < Re( )z  < 1 . Also, the center line Re( )z  = 1/2  is called the critical line .

  In Chapter 2, three equivalent lemmas are presented and proven.

Lemma 2.1

  When the set of real numbers is R  and Dirichlet Beta functions is ( )z   ( )z = x +i y ,  x ,y  R ,

( )z  = 0  in 0 < x < 1   if and only if  the following system of equations has a solution on the domain.


( )z   = Σ

r=1


( )-1 r-1 e-z log( )2r-1   = 0 (2.1+)

( )1-z  = Σ
r=1


( )-1 r-1 e-( )1-z  log( )2r-1  = 0 (2.1-)

Lemma 2.1'

  When the set of real numbers is R  and Dirichlet Beta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


 2

1
+z  = Σ

r=1



2r -1

( )-1 r-1

e-z log( )2r-1  = 0 (2.1'+)

 2
1

-z  = Σ
r=1



2r -1

( )-1 r-1

ez log( )2r-1  = 0 (2.1'-)

Lemma 2.2

  When the set of real numbers is R  and Dirichlet Beta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


c( )z  = Σ

r=1



2r -1

( )-1 r-1

cosh z log( )2r -1  = 0 (2.2c)

s( )z  = Σ
r=1



2r -1

( )-1 r-1

sinh z log( )2r -1  = 0 (2.2s )

 Then, expressing Lemma 2.2 in terms of real and imaginary parts, we obtain the following theorem.

Theorem 2.3

  When the set of real numbers is R  and Dirichlet Beta function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


uc( )x ,y  =  Σ

r=1



2r -1

( )-1 r-1

cosh x log( )2r -1 cos y log( )2r -1  = 0

vc( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log( )2r -1 sin y log( )2r -1   = 0

us( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log( )2r -1 cos y log( )2r -1  = 0

vs( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log( )2r -1 sin y log( )2r -1  = 0
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  In Chapter 3, the amplitude of vc( )x , y  with respect to y  is studied and the following law is obtained

Law 3.4.5

  Let x ,y  are real numbers and function vc( )x ,y be as follows.

vc( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log ( )2r -1 sin y log ( )2r -1 (2.4c)

Then,  given x ,  the amplitude of vc( )x ,y  is generally proportional to the absolute value of y .

  This law can explain  that when x  is given, the tips of the contour line of vc( )x ,y generally approach the y -axis as y

increases.  For example, if a contour line of height 1 of vc( )x ,y is drawn for y =100107  and y =1000010007 ,

it is as follows respectively. The left figure is y =100107  and the right figure is y =1000010007 .

  In Chapter 4, the amplitude of us( )x , y  with respect to y  is studied and the following law is obtained

Law 4.4.5
  Let x ,y  are real numbers and function us( )x ,y be as follows.

us( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log ( )2r -1 cos y log ( )2r -1 (2.4s)

Then,  given x ,  the amplitude of us( )x ,y is generally proportional to the absolute value of y .

  This law can explain  that when x  is given, the tips of the contour line of us( )x ,y generally approach the y -axis as y

increases.  For example, if a contour line of height 1 of vc( )x ,y is drawn for y =100107  and y =1000010007

it is as follows respectively. The left figure is y =100107  and the right figure is y =1000010007 .
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  In Chapter 5, the contour lines of vc( )x ,y = us( )x ,y = h  ( )h  0  are noticed. For example,  contour lines of height

8 of vc( )x ,y ,us( )x ,y are drawn as follows. The left figure is +8  and the right figure is -8 .

  Since vc( )x ,y ,us( )x ,y  are odd functions with respect to x , the left and right figures are mirror images with respect to

the y -axis. Furthermore, since vc( )x ,y is odd function with respect to y , the left and right figures are mirror images with

respect to the x -axis. Both figures can never overlap by translation or rotation in the plane.

  Nevertheless, at height 0 , the left and right figures have to overlap without translation or rotation. To do this, the contour

lines in both figures must deform as the height approaches 0  from above and below. And, at height 0 , both figures must

be symmetrical about both the y -axis and the x -axis. 

  This forces contour lines that were alternate at height 0  to be opposite at height 0 . This also applies to the x -axis.

Thus, at height 0 , the right and left edges of     must be absorbed into the y -axis,  and the lower and upper edges of

    must be absorbed into the x -axis. In fact, if we approach the heights of vc( )x ,y ,us( )x ,y from above and below

to 0 ,  the contour lines become eventually as follows.

For the animation of the above,  click here.  AnimB5218.gif

  Consistent with the theory, the contour parts asymmetric with respect to the y and x -axis  were absorbed in both axes.

As the result, only countless trivial solutions (blue points) remained. All non-trivial solutions were absorbed on the y -axis

(critical line) .

  Though these figures are drawn with | |y  10.5 , according to Law 3.4.5 and Law 4.4.5, the right and left tips of   
are absorbed more quickly into the y -axis where y  is large.

  Thus, the system of equations vc( )x ,y  = us( )x ,y  = 0  has no solution in the critical strip -1/2 < x < 1/2  except

on the critical line x =0 .
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  In Chapter 6, by organizing and summarizing the above, the Riemann hypothesis for the Dirichlet Beta Function is proven.

Proposition 6.1 ( Riemann Hypothesis )

Let ( )z  be the function defined by the following Dirichlet series.

( )z  = Σ
r=1


e-z log r =

1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re( )z  > 1 (1. )

This function has no non-trivial zeros except on the critical line Re( )z =1/2 .

Proof

According to Theorem 2.3 , the fact that the Dirichlet Beta function( )z has zeros in the critical strip is equivalent to the

fact that the system of equations uc = vc = us = vs = 0  has solutions in the critical strip. However, as seen in Chapter 5,

vc = us = 0  has no solution in the critical strip except on the critical line. Naturally, uc = vc = us = vs = 0  also has no

solution in the critical strip except on the critical line. Therfore, according to Theorem 2.3, the Dirichlet Beta  Function ( )z

has no zeros in the critical strip except on the critical line.   Q.E.D.

Analytical Proof of the Riemann Hypothesis for the Dirichlet Beta

In Chapter 1,  the definitions of the Dirichlet beta function ( )z  etc. are stated.

Dirichlet Beta Function

Dirichle Beta Function ( )z  is defined by the following Dirichlet series.

( )z  = Σ
r=1


e-z log( )2r-1  =

1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re( )z  > 1 (1.  )

  In Chapter 2, After going through three equivalent lemmas, we finally obtain the following theorem.

Theorem 2.3

When the set of real numbers is R  and Dirichlet Beta Function is ( )z   ( )z = x +i y ,  x ,y  R ,

( )1/2  z  = 0  in -1/2 < x < 1/2   if and only if  the following system of equations has a solution on the domain.


uc( )x ,y  =  Σ

r=1



2r -1

( )-1 r-1

cosh x log( )2r -1 cos y log( )2r -1  = 0

vc( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log( )2r -1 sin y log( )2r -1   = 0

us( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

sinh x log( )2r -1 cos y log( )2r -1  = 0

vs( )x ,y  =  Σ
r=1



2r -1

( )-1 r-1

cosh x log( )2r -1 sin y log( )2r -1  = 0

In Chapter 3, it is noted that the first terms  r =1  of the vc( )x,y and us( )x,y  series are both 0 .  So, these first

terms are changed from r =1  to r =2 ,  and the following lemma is proven.

Lemma 3.1
When y is a real number, x is a real number s.t. -1/2 < x < 1/2  , the following system of equations has no solution

such that x 0 .


vc( )x ,y  =  Σ

r=2



2r -1

( )-1 r-1

sinh x log( )2r -1 sin y log( )2r -1   = 0     (3.1c )

us( )x ,y  =  Σ
r=2



2r -1

( )-1 r-1

sinh x log( )2r -1 cos y log( )2r -1  = 0     (3.1s )
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Proof (overview)
1. Integrating the series (3.1s)  term by term from 0  to y  with respect to y , 

∫us( )x,y dy = Σ
r=2



2r -1 log( )2r -1

( )-1 r-1

sinh x log( )2r -1 sin y log( )2r -1     (3.1sy)

The y coordinates of the peaks and valleys of vc( )x ,y and ∫us( )x ,y dy almost match. (  sin y log( )2r -1
     is shared )

The peaks and valleys of ∫us( )x ,y dy  and  the zeros of us( )x ,y exactly match. (   Function and its derivative )

So, the y coordinates of the peaks and valleys of vc( )x ,y and the zeros of us( )x ,y almost match.

2. Integrating the series (3.1c)  term by term from 0  to y  with respect to y , 

∫vc( )x,y dy = -Σ
r=2



2r -1 log( )2r -1

( )-1 r-1

sinh x log( )2r -1 cos y log( )2r -1 (3.1cy)

The y coordinates of the peaks and valleys of us( )x ,y and ∫vc( )x ,y dy almost match. (  cos y log( )2r -1
     is shared )

The peaks and valleys of ∫vc( )x ,y dy  and  the zeros of vc( )x ,y exactly match. (   Function and its derivative )

So, the y coordinates of the peaks and valleys of us( )x ,y and the zeros of vc( )x ,y almost match.

3.  As the result of 1 and 2, vc( )x ,y and us( )x ,y do not have common zeros in -1/2 < x < 1/2  , x  0 .

  In Chapter 4,  by summarizing  the above,  the Riemann hypothesis for the Dirichlet Beta Function is proven.

Theorem 4.1 ( Riemann Hypothesis )

  Let ( )z  be the function defined by the following Dirichlet series.

( )z  = Σ
r=1


e-z log r = 

1z

1
-

3z

1
+

5z

1
-

7z

1
+-  Re( )z  > 1 (1. )

This function has no non-trivial zeros except on the critical line Re( )z =1/2 .

Proof (overview)
  According to  Lemma 3.1 and Theorem 2.3 , ( )1/2  z  has no zeros other than x = 0  in -1/2 < x < 1/2 .

That is,  Dirichlet Beta function( )z  has no zeros other than x = 1/2  in 0 < x < 1 .
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
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