30 Higher and Super Definite Integrals of Linear Composite Functions

Abstract

In this chapter, we study definite integrals, higher-order definite integrals and super definite integrals for
a composite function g(f( X ) ) where f( X ) is a linear function.
(1) In Section 1, we derive the theorem for the definite integral of g( cx+d ) ..

(2) In Section 2, we progress (1) to higher definite integrals.

(3) In Section 3, we progress (2) to super definite integrals.
30.1 Definite Integrals of Linear Composite Functions

Theorem 30.1.1

Let C be a positive number and a,b,d are real numbers. If a primitive function g<1>( X ) of a function

g(X) is bounded and holomorphic at an interval [ ac+d , bc+d ], the following holds.

b 1 bc+d
/ g(cx+d)dx = —/ g(x)dx
a C Jac+d

Proof
Let cx+d =f, ac+d =f,. Then dx =df/c.

Therefore, if we perform the variable transformation [a , X] - [fa , f] ,

X f
[a@eriran= [on <

Here, put X=D , then bc+d =f,. Therefore,

b 1 h
/ g(cx+d)dx = —/ g(f)df
a C Ji
i.e.
b 1 bc+d
/ g(cx+d)dx = — g(f)df
a C Jac+d

In the integral on the right hand side, both the upper and lower limits are constants, so the symbol f can be

changed freely. Thus, changing f to X , we obtain the desired expression. Q.E.D.

Example 1 g(cx+d) = (cx+d)3-3(cx+d ) +1
According to the theorem, the definite integral from 2 to 7 is as follows

7c+d

/2 7{ (cx+d)3-3(cx+d)+1}dx = % (x3-3x+1)dx

2c+d
Calculating both sides by the mathematical processing software Mathematica,

135¢ 2385¢° 5 135 ¢ d? N
5- + -15d+335c°d+ —— +5d
2 4 2

135¢ 2385¢3 5 135 c d? s
5- + -15d+335¢c"d+ —— +5d
2 4 2

Gl[c, d] :

Expand [Gr[c, d]] :




It turns out that both sides are equal.

Example 2 g(cx+d) = (cx+d )?cos(cx+d)
According to the theorem, the definite integral from 1 to 5 is as follows
5 1 5c+d
/ (cx+d)?cos(cx+d)dx = —/ x2cos X dx
1 C Jic+d
When ¢=3,d=4, calculating both sides by Mathematica ,

Gl[3, 4] : — (- 14Cos[7] +38Cos[19] —475in[7] + 3595in[19])

Gr[3, 4] : (-14Cos[7] +38Cos[19] -475in[7] +359S5in[19])

It turns out that both sides are equal.

Setting a=+c0 , b =0 in[Theorem 30.1.1|, we obtain the following corollary.

Corollary 30.1.2
Let C be a positive numbe, d be a real number and N be a nartural number, If a primitive function <1>(X)

of a function g(x) is bounded and holomorphic at an interval (iOO , O] , the following holds.

/ "y ex+d)dx = — / 90O dx

Cioo

Where, for £, the one where the integrals converge is used.

. . . . N . <1> . . .
The difficulty with this corollary is that " the primitive function Q (X) is bounded in the interval (iOO ) O] "

What kind of primitive function satisfies this condition? Through trial and error, | have found that the primitive

functions satisfy this condition approximately in the following cases.

Cases where the primitive function satisfies the conditions of the theorem.
(1) g(x) has arctan x , arccot x as a factor.

(2) g<1>(x) has tanh X as a factor.

()9
(4) 9

<1>
L (X) has a fractional function with equal degrees of numerator and denominator as a factor.

<1>( X ) has €* as a factor.

Example 1 g<1>(X) has arctan X as a factor

/0 dx 1 /9 dx

o (ex+d)?+1 € Jre x2+1

Left:
0

0 -1
[~ |22

xT +oo




1 1
=€{tan'1d—tan'100}=?(tan'1d¢g)
Right:
1ddx_/dxd_1 o _ _ 1 a1, T
C S x241 _{ x2+1] =g L) = = C(tan d+2)

+co
These are the consequences of being lim tan _1( cx+d) = lim tan W =+72/2. ( See figure.)
X = +00 X —>+00

tan~"(x) 151

2I|:|

In additiona, a similar figure can also be drawn for (2) and (3) abowe.

Example 2 g<l>(X) has € as a factor

0 1 fd
//1°X+ dx=?//lxdx (A>0)

0 ; 1 e(cx+d)|og/1 0 edlog/?,
Left: / A9 dx = | = ——— = —
— c log 4 » ClogA
1 rd 1 exlog/I d exlog/l
Right: —/ Aldx = — | —— =
C Jow clLlogd 1., clog4d
These are the consequences of being lim e(c“d )og 2 = lim e* log 4 = 0. ( See figure.)
X > =00 X =00
When +, same as abowe.
2_.:./
- log(2
log(2)
- x
2 4 &

The power of € “in Examplw 2 is enormous. Therefore, most g<1>(x) including exponential functions

are considered to satisfy the conditions of [Corollary 30.1.2| In fact, here is a list of what has been verified.



/Oei(c“d)dx = Fl/deixdx

0 1 rd
/_li(CXJ'd)dx:F[ A dx (1> 1)

/Oe—/l(cx+d )2dX — i/de—lxzdx
+00 C +00

/_Ooe—/?,(CX+d)2dX — %/_me—/ixzdx

0

/OEi(CX+d)dX = Fl/dEi(x)dx

Foo Foo

0 1 gd
/ e o) (ex+d)  dx = ?/ e x4 dx

0 1 /d
/ e+ jog (cx+d)dx = ?/ e™ log x dx

+00

0 1 rd
/_ e o) gin (ex+d)dx = ?/— e sin x dx

+ 00

0 ] 1 fd
/ e+ cos(ex+d)dx = ?/ e™ cosx dx

( Gaussian Integral half )

( Gaussian Integral )

(Ei(x) =/_:Oe7xdx)

(A>-1)



30.2 Higher Definite Integrals of Linear Composite Functions

Lemma 30.2.0

When cx+d =f, ca+d =f, , the following expression holds for a natural number N .

/a~)~(~/axg(cx+d)dx” = (%)n/f:"/;g(f)df"

Proof
By assumption, dX = dfZC . So, if we perform the variable transformation [a, X | > [fa , f] ,

X 1 f
/ glcx+d)dx = —/ g(@®df
a C fa

Integrating both sides from a to X

/ax/axg(cx+d)dx2 = /ax( %/fafg(f)df)dx

Substituting dX = df /C for the right side and perform the transformation [a, X | - [fa , f] ,

/X/x d)dx? /f(l/ffdf)df
+ = — —
A a@J(cx Ddx |G fag() .
i.e.
X X 1 2 rf pf
//g(cx+d)dx2=(—) //g(f)olf2
a Ja C fa Jha
Hereafter, repeating the same calculations, we obtain the desired expression. Q.E.D.
Note

This lemma is the same as Formual 23.1.2 (" |23 Higher Integral of Composition| ") . The formula was proved

after a lengthy calculation from a general formula for higher integrals of composite functions, but the lemma in

this section is proved directly.
Using this lemma, we can prove the following theorem.

Theorem 30.2.1

Let >0, a,b,d arereal numbers and N be a natural number, If a higher primitive function g<”>(x) of

a function g(X ) is bounded and holomorphic at an interval [ac+d , bc+d |, the following holds.

b rx px 1\" bc+d px X
/ // g(cx+d)dx" = (—) / / = g(x)dx"
a Ja Ja C ac+d Jac+d Jac+d

Proof
According Lemma 30.2.0, when cX+d =f, ac+d =T the following holds for a natural number N ,

/a'x"/axg(cx+d)dx” = (%)néf"/fafg(f)df"

Here, put X=Db , then bc+d =f,,. Therefore,
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b rx [x 1\" phoopf pf
a va Ja f, Ja Jha
i.e.
b rx prx 1 \" pbe+d ,f f
/ // g(cx+d)dx" ( — ) / / = g(f)df"
a Ja Ja C ac+d Jac+d Jac+d

In the higher integral on the right hand side, both the upper and lower limits are constants, so the symbol f

can be changed freely. Thus, changing f to X , we obtain the desired expression. Q.E.D.

Example 1 g(cx+d) = A%

According to the theorem, the 3 rd order definite integral from 1 to 6 is as follows

6 /X /X d 1 n r6c+d /X X
///zc“ dx3=(—)/ / AXdx®
1 J1 J1 C lc+d J1c+dJ1c+d

Since this is a conceptual formula, the following triple integral is required for actual calculation.

6 ru rt t+d 1 N r6c+d ru t
///xl“dtdudx:(—)/ / Atdtdu dx
1 J1IJ1 C 1c+d J1c+dJ1c+d

When A=2, calculating both sides by Mathematica ,

2C+d 26 c+d g 2C+d 25 2—1+C+d
Expand [Gl[c, d, 2]] : - + - -
log[2]® c2log(2)® c?log[2]? clog[2]
2C+d 26 c+d g 2C+d 25 271+C+d
Expand [Gr[c, d, 2]] @ - + - -

cAlog[2]® c*log[2]® <?lLog[2]® clog[2]

It turns out that both sides are equal.

Example 2 g(cx+d) = (cx+d)3cos(cx+d)

According to the theorem, the 3 rd order definite integral from 2 to 5 is as follows

5 ru gt 3 1\" 5c+d ru t
/ / / (ct+d)>cos(ct+d)dtdu dx = (—) / / / t3cost dtdu dx
2 J2 J2 C 2c+d J2c+dJ2c+d

When ¢=3,d=4, calculating both sides by Mathematica ,

5

Gl[c_, d ] :=I U”U’u(ct +d)* Cos[ct+d] dlt) d]u) dx
2 2 P
133 r5c+d u

Gric_,d ] := (—] j U’ U t* Cos [t] dlt] dlu) dx
C 2c+d 2c+d 2c+d

N[{GLl[3, 4], Gr[3, 4]}]
{822.152 , 822.152}

It turns out that both sides are equal.

Calculations like the two Examples above can be done using multiple integrals up to the thi3rd or 4 th order,

but when it comes to the 5th or 8 th order, it becomes difficult to describe and calculate.



To solve this problem, we will derive the following theorem using Cauchy Formula for Repeated Integration
(" 4. Higher Integral ").

Theorem 30.2.1'

Let >0, a,b,d arereal numbers and N be a natural number, If a higher primitive function g<”>(x) of
a function g(x ) is bounded and holomorphic at an interval [ac+d , bc+d |, the following holds.
1 bc+d

1 b o 1\" N
Ry | @0 s@edac= (¢ | s [ o0 geou

Proof
According to Theorem 4.2.1 ("[4. Higher Integral["), Cauchy Formula for Repeated Integration is as follows.

X X 1 X
= [ gQdx" = —/ x-D" " g@®dt
[ 9 = s [e-0"90
Using this, can be described as follows.

F(n)/ x-D" 1g(ct+d)dt = (?) 0 / G- lg(f)df

Here, put X=Db , then bc+d =f,,. Therefore,

1 b o (1N 1 b -
™ / G- 1g(ctﬂj)dt—(;) ™ /f (fo=t)" ™ g (O df

n bc+d
o) / G©-D"" gCct+d)dt = (%) F(ln) | (Qcrd-D" " g®df

In the higher integral on the right hand side, both the upper and lower limits are constants, so the symbol f

can be changed freely. Thus, changing f to t, further, changing t to X in both sides, we obtain the desired

expression. Q.E.D.

Example 1' g(cx+d) = A%

According to the theorem, the N th order definite integral from 1 to 6 is as follows

n 6¢c+d
/ (6 X)n 1ﬂvcx+d ( 1) 1

(6c+d-x)"tA%dx (1>1)

Iin) ITn) Jic+d
When A=2, calculating both sides by Mathematica for N =3,
2C+d 26 c+d 5 2C+d 25 2—1+C+d
Expand [Gl[c, d, 2, 3]] . - + - -
cLogr2]® c3log[2]® c?log[2]? clog[2]
2C+d 26C+d g 2C+d 25 2—1+C+d
Expand [Gr[c, d, 2, 3]] . - + -

clog[2]® c?log[2]® c?Log[2]? clog[2]

The results are in exact agreement with Example 1.

Setting a=+00 , b =0 in Theorem 30.2.1', we obtain the following corollary.
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Corollary 30.2.2'

Let C be a positive numbe, d be a real number and N be a nartural number, If a higher order primitive function

<n>( X ) of a function g( X ) is bounded and holomorphic at an interval (iOO O] , the following holds.

F(n)/ O-x)" 1g(CX+d)dX ( i-) F(n)/ d-" 1g(X)dX

Where, for =, the one where the integrals converge is used.

+
Example 2' g(cx+d) = Iog(tanh szd )

According to the corollary., the N th order definite integral from © to O is as follows

Hn)/ ( x)”llog(tanh 2d )d :(%) Hn)/ (d x)”llog(tanhz)d

When ¢=3,d=4, calculating both sides by Mathematica for N=5 ,

T'[n_] := Gamma[n]

Glic ,d ,n ] := f(e x)"lLog[Tanh[cx+d]]cﬂx

. [1n] -J: (d - x)"* Log [Tanh [2] ] dx

N[{Gl[3, 4, 5], Gr[3, 4, 5]}]
[0.800158746 , 0.000150746)

T[n]

Gr[c_,d ,n_] := [—]
c

It turns out that both sides are equal.



30.3 Super Definite Integrals of Linear Composite Functions

Theorem 30.3.1

Let C, P are a positive numbers and @, b , d are real numbers, Ifa super primitive function g<p>(x) of

a function g(x ) is bounded and holomorphic at an interval [ac+d bc+d |, the following holds.

1 bc+d 1
S / G- g(ex+d)dx = ( - ) ) /d Gc+d )" g () dx

Proof
Replacing the natural number N with a positive number P in |Theorem 30.2.1'l we obtain the desired

expression.  Q.E.D.

Example 1 g(cx+d) =sech (cx+d)
According to the theorem, the P th order definite integral from 2 to 10 is as follows

1 1 10c+d

p
p-1 = = -
1"(p)/ (10-x )P sech(cx+d )dx = ( - ) 7o) Joorg

When ¢=3,d=4, calculating both sides by Mathematica for p=3.5,
T[p_] := Gammal[p]

(10c+d -x )P~ sechx dx

1 10
(18 - x)P* sech[c x + d] dx

Gl[c ,d ,p_ ] :=
rp]

1yv¢ 1 16 c-d
Gric_,d ,p_ ] := [—] J- (16 c+d-x)PtSech[x] dx
C T[p] “2c+d

N[{Gl[3, 4, 3.5], Gr[3, 4, 3.5]}]
(0.00148737 , 9.00148737}

It turns out that both sides are equal.

Setting a=+c0 , b =0 in Theorem 30.3.1, we obtain the following corollary.

Corollary 30.3.2
Let C, P are a positive numbers and d be areal numbers, If a super primitive function g<p>(x) of

afunction g(X ) is bounded and holomorphic at an interval (£ ,d ], the following holds.

F(lp) +00(0 )Pt g(ex+d)dx = ( - ) F(p)/ @) g () dx

Where, for £, the one where the integrals converge is used.

Example 2 g(cx+d) = e (cx+d )*

According to the corollary, the P th order definite integral from — to 0 is as follows

plct+d Ay = p-1,X 4
ITD)/(X) (cx+d)*dx = (c) Rp)/(d -x )P e*x%dx (4> -1)

When ¢=3,d=4, 1=-0.99, calculating both sides by Mathematica for p=2.5,

-9-



T[p_] := Gamma[p]

1
Gl[c ,d , A ,p ]:

f (0 -x)P e ™ (cx+d)*dx
r[p] J-=

1yP 1
(—] J.d (d- x)Pte*x*dx
¢/ rip] Ju

N[{G1[3_’ 4_’ —9.99, 2:5], Gr‘[3, 4_’ —9.99, 2.5] }]
{1.52252 -1.21054 1 , 1.52252 -1.210854 1}

Gric_,d , A ,p_]:

It turns out that both sides are equal.
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